Skip to main content

Heat Treatment Influence on the Content of K, Mg, Fe, Mn, P, Zn in Chicken Meat

  • Conference paper
  • First Online:
10th Central European Congress on Food (CE-Food 2020)

Included in the following conference series:

  • 359 Accesses

Summary

Meat is a major source of minerals in the human diet. The mineral content in meat is variable and depends on various factors such as animal breed, nutrition and processing. The amount of mineral substances ranges from 0.8% to 1.0%. Sufficient quantities of minerals present in chicken meat are: phosphorus, iron, zinc, potassium, magnesium and manganese.

The aim of this paper is to determine the influence of heat treatment regime on the content of essential minerals in chicken meat products.

The paper analyzes four experimental groups of boiled chicken meat samples. During the experiment, the following parameters were varied: temperature 55–75 ℃, boiling time 80–107 min and relative humidity 74–86%. Samples were prepared by microwave oven digestion. Analysis of mineral content was performed using atomic absorption spectrophotometry (ICP OES technique). The content of the following elements was determined: K, Mg, Fe, Mn, P and Zn.

The mineral content in the finished products had the following values: K 460.27–486.27 mg/kg, Mg 47.12–51.53 mg/kg, Fe 0.67–0.74 mg/kg, Mn 2.83–3.11 mg/kg, P 410.15–430.77 mg/kg and Zn 1.21–1.26 mg/kg.

Change in the heat treatment parameters affected the content of the tested elements. In all finished product samples, the content of mineral substances was higher in relation to the raw meat samples. Statistical analysis of the results showed no significant differences in Fe, Mn and Zn content in the final products, while the content of K, Mg and P differed significantly depending on treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nohr, D., Biesalski, H.: ‘Mealthy’food: meat as a healthy and valuable source of micronutrients. Animal 1(2), 309–316 (2007). https://doi.org/10.1017/S1751731107657796

    Article  CAS  PubMed  Google Scholar 

  2. Gerber, N., Brogioli, Z., Hattendorf, B., Scheeder, M.R.L., Wenk, C., Gunther, D.: Variability of selected trace elements of different meat cuts determined by ICP-MS and DRC-ICPMS. Animal 3(1), 166–172 (2009). https://doi.org/10.1017/S1751731108003212

    Article  CAS  PubMed  Google Scholar 

  3. Olaoye, O.A.: Meat: an overview of its composition, biochemical changes and associated microbial agents. Int. Food Res. J. 18, 877–885 (2011)

    CAS  Google Scholar 

  4. Hadžić, A.: Minerali u ishrani, Edition: IPublisher: Buybook; Sarajevo, BiH (2013). ISBN-13: 978–9958–30–189–6

    Google Scholar 

  5. Schaible, H.-G., Matyas, J.R.: J. In: Binder, M.D., Hirokawa, N., Windhorst, U. (eds.) Encyclopedia of Neuroscience, pp. 2071–2079. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-29678-2_10

  6. Troy, D.J., Kerry, J.P.: Consumer perception and the role of science in the meat industry. Meat Sci. 86, 214–226 (2010). https://doi.org/10.1016/j.meatsci.2010.05.009

    Article  CAS  PubMed  Google Scholar 

  7. Melø, R., Gellein, K., Evje, L., Syversen, T.: Minerals and trace elements in commercial infant food. Food Chem. Toxicol. 46, 3339–3342 (2008).https://doi.org/10.1016/j.fct.2008.08.007

  8. Riovanto, R., Marchi, M.D., Cassandro, M., Penasa, M.: Use of near infrared transmittance spectroscopy to predict fatty acid composition of chicken meat. Food Chem. 134, 2459–2464 (2012). https://doi.org/10.1016/j.foodchem.2012.04.038

    Article  CAS  PubMed  Google Scholar 

  9. Glamočlija, N., et al.: Comparative analysis of meat chemical composition of different broiler provenances. Meat Technol. 57(1), 1–4 (2016)

    Google Scholar 

  10. Kralik, G., Kralik, Z., Grčević, M., Hanžek, D.: Quality of chicken meat. Anim. Husb. Nutr. Qual. Chicken Meat, 65–94 (2018)

    Google Scholar 

  11. Grujić, R., Mandić, S., Đurica, R.: Sadržaj kadmijuma, olova, cinka i selena u proizvodima od mesa na banjalučkom tržištu. Tehnologija mesa 41(4–6), 127–154 (2000)

    Google Scholar 

  12. Đurica, R., Grujić, R., Mandić, S., Vučić, G.: Sadržaj nekih mikroelemenata u prehrambenim proizvodima na području banjalučkog tržišta. Arhiv za farmaciju 52(4), 738–739 (2002)

    Google Scholar 

  13. Rekanović, S., Grujić, R., Vučić, G., Hodžić, E.: Mineral composition of traditional sheep meat products in dependence on the thermal treatment. J. Hygienic Eng. Des. 29, 92–97 (2019)

    Google Scholar 

  14. Grujić, R., Tadić, G., Vujadinović, D., Vukić, M.: Osnove prehrambenih tehnologija, 1–408 (2017). ISBN 978–99955–81–23–7, UDK 663/664(075.8)

    Google Scholar 

  15. Rašeta, M., et al.: Determination of co-value as an indicator of nutritive value of pâté sterilised by regular and optimized regimes. Vet. Glas. 72(2), 101–111 (2018)

    Article  Google Scholar 

  16. Alfaia, C.M., Lopes, A.F., Prates, J.A.M.: Cooking and diet quality: a focus on meat. U In: Preedy, V.R., Hunter, L.A., Patel, V.B. (Eds.), Diet Quality: An Evidence-Based Approach, vol. 1, pp. 257–284. Humana Press, New York, Springer (2013). https://doi.org/10.1007/978-1-4614-7339-8_20

  17. Wareing, P.: HACCP: A Toolkit for Implementation. Leatherhead International Limited. Edition: 2nd ed. Leatherhead, Surrey: Royal Society of Chemistry (2010). https://doi.org/10.1039/9781849732086

  18. Bertram, H.C.: Meat Structure During Processing. Reference Module in Food Science, Encyclopedia of Food Chemistry, pp. 22-26(2018) https://doi.org/10.1111/1541-4337.12721

  19. Rekanović, S.: Uticaj režima toplotne obrade i dimljenja na karakteristike kvaliteta i bezbjednost proizvoda od mesa ovaca i peradi. Tehnološki fakultet u Zvorniku, Univerzitet u Istočnom Sarajevu, Doktorska disertacija (2020)

    Google Scholar 

  20. Gerber, N., Scheeder, M.R., Wenk, C.: The influence of cooking and fat trimming on the actual nutrient intake from meat. Meat Sci. 81(1),148–154 (2009).https://doi.org/10.1016/j.meatsci.2008.07.012

  21. Tomović, V., et al.: Effect of end point internal temperature on mineral contens of boiled pork loin. Food Process. Preserv. 39(6), 1854–1858 (2015)

    Article  Google Scholar 

  22. Campos, N.S., et al.: Evaluation of the influence of different cooking pot types on the metallic elements content in edible chicken tissues by MIP OE, Brazilian. J. Food Technol. 23, e2019308 (2020). http://orcid.org/0000-0002-7753-1059

  23. Menezes, E.A., Oliveira, A.F., França, C.J., Souza, G.B., Nogueira, A.R.A.: Bioaccessibility of Ca, Cu, Fe, Mg, Zn, and crude protein in beef, pork and chicken after thermal processing. Food Chem. 240, 75–83 (2018).https://doi.org/10.1016/j.foodchem.2017.07.090

  24. Norouzian, M.A., Ghiasi, S.E.: Carcass performance and meat mineral content in Balouchi lamb fed pistachio by-products. Meat Sci. 92, 157–159 (2012). https://doi.org/10.1016/j.meatsci.2012.04.003

  25. Lucarini, M., et al.: Micronutrients in Italian ham: a survey of traditional products, Food Chem. 140, 837–842 (2013) .https://doi.org/10.1016/j.foodchem.2012.10.020

  26. Jimémezmez-Colmenero, F., Ventanas, J., Toldrà, F.: Nutritional composition of dry-cured ham and its role in a healthy diet. Meat Sci. 84(4), 585–593 (2010).https://doi.org/10.1016/j.meatsci.2009.10.029

  27. Purchas, R.W., Wilkinson, B.H.P., Carruthers, F., Jackson, F.: A comparison of the nutrient content of uncooked and cooked lean from New Zealand beef and lamb. J. Food Comp. Anal. 35(2), 75–82 (2014). https://doi.org/10.1016/j.jfca.2014.04.008

    Article  CAS  Google Scholar 

  28. Ersoy, B., Özeren, A.: The effect of cooking methods on mineral and vitamin contents of African catfish. Food Chem. 115(2), 419–422 (2009). https://doi.org/10.1016/j.foodchem.2008.12.018

    Article  CAS  Google Scholar 

  29. Hosseini, H., et al.: Effect of different cooking methods on minerals, vitamins and nutritional quality indices of kutum roach (Rutilusfrisii kutum). Food Chem. 148, 86–91 (2014). https://doi.org/10.1016/j.foodchem.2013.10.012

    Article  CAS  PubMed  Google Scholar 

  30. Badiani, A., Stipa, S., Bitossi, F., Gatta, P.P., Vignola, G., Chizzolini, R.: Lipid composition, retention and oxidation in fresh and completely trimmed beef muscles as affected by common culinary practices. Meat Sci. 60, 169–186 (2002). https://doi.org/10.1016/S0309-1740(01)00119-X

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors have no conflict of interest to state regarding the results presented within this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebila Rekanović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rekanović, S., Grujić, R., Vučić, G., Hodžić, E. (2022). Heat Treatment Influence on the Content of K, Mg, Fe, Mn, P, Zn in Chicken Meat. In: Brka, M., et al. 10th Central European Congress on Food. CE-Food 2020. Springer, Cham. https://doi.org/10.1007/978-3-031-04797-8_22

Download citation

Publish with us

Policies and ethics