Skip to main content

The Neural Basis of Simultaneous Multitasking

  • Chapter
  • First Online:
Handbook of Human Multitasking

Abstract

As humans, we show striking performance costs when attempting to complete more than a single task at a time. This is perhaps surprising given the inherent complexity and processing power of the human brain. In this chapter, we synthesise the in-roads that have been made into understanding the neural basis of multitasking costs and their practice-induced remediation. We propose a taxonomy of the theoretical traditions and empirical insights that have informed our understanding of why the brain struggles to multitask. Cognitive architecture approaches pose cognitive operations that may give rise to multitasking costs and seek neural correlates of those operations. System architecture approaches leverage insights regarding the function of brain circuits to propose why such systems may struggle to multitask. Last, neural architecture approaches use principles of neural computation to build networks that are constrained in multitasking performance as a consequence of their computational features. These approaches converge to demonstrate the importance of prefrontal cortical and subcortical interactions in the production of multitasking costs and, surprisingly, demonstrate the computational advantages afforded by multitasking costs. In the final sections, we outline a new framework for characterising multitasking costs, demonstrating that the brain may leverage shared information between tasks to gain representational efficiency, which occurs at the expense of multitasking performance. Practice serves to attenuate shared environmental information, thereby separating representations and facilitating multitasking performance.

Visualisations by K.G. Garner & David Lloyd.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://cfn.upenn.edu/aguirre/wiki/public:neurons_in_a_voxel

References

  • Anguera, J. A., Boccanfuso, J., Rintoul, J. L., Al-Hashimi, O., Faraji, F., Janowich, J., Kong, E., Larraburo, Y., Rolle, C., Johnston, E., & Gazzaley, A. (2013). Video game training enhances cognitive control in older adults. Nature, 501(7465), 97–101.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashby, F. G., Turner, B. O., & Horvitz, J. C. (2010). Cortical and basal ganglia contributions to habit learning and automaticity. Trends in Cognitive Sciences, 14(5), 208–215.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bornstein, A. M., & Daw, N. D. (2011). Multiplicity of control in the basal ganglia: computational roles of striatal subregions. Current Opinion in Neurobiology, 21(3), 374–380.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouton, M. E. (2004). Context and behavioral processes in extinction. Learning & Memory, 11(5), 485–494.

    Article  Google Scholar 

  • Bratzke, D., & Janczyk, M. (2020). Introspection about backward crosstalk in dual-task performance. Psychological Research https://doi.org/10.1007/s00426-019-01282-3

  • Bratzke, D., Rolke, B., & Ulrich, R. (2009). The source of execution-related dual-task interference: motor bottleneck or response monitoring? Journal of Experimental Psychology. Human Perception and Performance, 35(5), 1413–1426.

    Article  PubMed  Google Scholar 

  • Brisson, B., & Bourassa, M. È. (2014). Masking of a first target in the attentional blink attenuates the P 3 to the first target and delays the P 3 to the second target. Psychophysiology. https://onlinelibrary.wiley.com/doi/abs/10.1111/psyp.12204

  • Brown, S. D., & Heathcote, A. (2008). The simplest complete model of choice response time: linear ballistic accumulation. Cognitive Psychology, 57(3), 153–178.

    Article  PubMed  Google Scholar 

  • Caballero, J. A., Humphries, M. D., & Gurney, K. N. (2018). A probabilistic, distributed, recursive mechanism for decision-making in the brain. PLoS Computational Biology, 14(4), e1006033.

    Article  PubMed  PubMed Central  Google Scholar 

  • Camilleri, J. A., Müller, V. I., Fox, P., Laird, A. R., Hoffstaedter, F., Kalenscher, T., & Eickhoff, S. B. (2018). Definition and characterization of an extended multiple-demand network. NeuroImage, 165, 138–147.

    Article  PubMed  Google Scholar 

  • Carpenter, G. A. (2001). Neural-network models of learning and memory: leading questions and an emerging framework. Trends in Cognitive Sciences, 5(3), 114–118.

    Article  PubMed  Google Scholar 

  • Caruana, R. (1997). Multitask Learning. Machine Learning, 28(1), 41–75.

    Article  Google Scholar 

  • Cho, K. W., Altarriba, J., & Popiel, M. (2015). Mental juggling: when does multitasking impair reading comprehension? The Journal of General Psychology, 142(2), 90–105.

    Article  PubMed  Google Scholar 

  • Collette, F., Olivier, L., Van der Linden, M., Laureys, S., Delfiore, G., Luxen, A., & Salmon, E. (2005). Involvement of both prefrontal and inferior parietal cortex in dual-task performance. Brain Research. Cognitive Brain Research, 24(2), 237–251.

    Article  PubMed  Google Scholar 

  • Cox, J., & Witten, I. B. (2019). Striatal circuits for reward learning and decision-making. Nature Reviews. Neuroscience. https://doi.org/10.1038/s41583-019-0189-2

  • Dayan, P., & Abbott, L. F. (2001). Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. MIT Press.

    Google Scholar 

  • Dehaene, S., Kerszberg, M., & Changeux, J. P. (1998). A neuronal model of a global workspace in effortful cognitive tasks. Proceedings of the National Academy of Sciences of the United States of America, 95(24), 14529–14534.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dreher, J.-C., & Grafman, J. (2003). Dissociating the roles of the rostral anterior cingulate and the lateral prefrontal cortices in performing two tasks simultaneously or successively. Cerebral Cortex, 13(4), 329–339.

    Article  PubMed  Google Scholar 

  • Duncan, J. (2010). The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends in Cognitive Sciences, 14(4), 172–179.

    Article  PubMed  Google Scholar 

  • Duncan, J. (2013). The structure of cognition: attentional episodes in mind and brain. Neuron, 80(1), 35–50.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dux, P. E., Ivanoff, J., Asplund, C. L., & Marois, R. (2006). Isolation of a central bottleneck of information processing with time-resolved FMRI. Neuron, 52(6), 1109–1120.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dux, P. E., Tombu, M. N., Harrison, S., Rogers, B. P., Tong, F., & Marois, R. (2009). Training improves multitasking performance by increasing the speed of information processing in human prefrontal cortex. Neuron, 63(1), 127–138.

    Article  PubMed  PubMed Central  Google Scholar 

  • Erickson, K. I., Colcombe, S. J., Wadhwa, R., Bherer, L., Peterson, M. S., Scalf, P. E., & Kramer, A. F. (2005). Neural correlates of dual-task performance after minimizing task-preparation. NeuroImage, 28(4), 967–979.

    Article  PubMed  Google Scholar 

  • Feng, S. F., Schwemmer, M., Gershman, S. J., & Cohen, J. D. (2014). Multitasking versus multiplexing: Toward a normative account of limitations in the simultaneous execution of control-demanding behaviors. Cognitive, Affective & Behavioral Neuroscience, 14(1), 129–146.

    Article  Google Scholar 

  • Filmer, H. L., Lyons, M., Mattingley, J. B., & Dux, P. E. (2017a). Anodal tDCS applied during multitasking training leads to transferable performance gains. Scientific Reports, 7(1), 12988.

    Article  PubMed  PubMed Central  Google Scholar 

  • Filmer, H. L., Mattingley, J. B., Marois, R., & Dux, P. E. (2013). Disrupting prefrontal cortex prevents performance gains from sensory-motor training. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33(47), 18654–18660.

    Article  Google Scholar 

  • Filmer, H. L., Varghese, E., Hawkins, G. E., Mattingley, J. B., & Dux, P. E. (2017b). Improvements in Attention and Decision-Making Following Combined Behavioral Training and Brain Stimulation. Cerebral Cortex, 27(7), 3675–3682.

    PubMed  Google Scholar 

  • Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. NeuroImage, 19(4), 1273–1302.

    Article  PubMed  Google Scholar 

  • Garner, K., Garrido, M. I., & Dux, P. E. (2020). Cognitive capacity limits are remediated by practice-induced plasticity between the putamen and pre-supplementary motor area. bioRxiv. 564450. https://doi.org/10.1101/564450

  • Garner, K. G., & Dux, P. E. (2015). Training conquers multitasking costs by dividing task representations in the frontoparietal-subcortical system. Proceedings of the National Academy of Sciences of the United States of America, 112(46), 14372–14377.

    Article  PubMed  PubMed Central  Google Scholar 

  • Garner, K. G., Tombu, M. N., & Dux, P. E. (2014). The influence of training on the attentional blink and psychological refractory period. Attention, Perception & Psychophysics, 76(4), 979–999.

    Article  Google Scholar 

  • Gershman, S. J., Blei, D. M., & Niv, Y. (2010). Context, learning, and extinction. Psychological Review, 117(1), 197–209.

    Article  PubMed  Google Scholar 

  • Graybiel, A. M., & Grafton, S. T. (2015). The striatum: where skills and habits meet. Cold Spring Harbor Perspectives in Biology, 7(8), a021691.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gurney, K., Prescott, T. J., & Redgrave, P. (2001). A computational model of action selection in the basal ganglia. I. A new functional anatomy. Biological Cybernetics, 84(6), 401–410.

    Article  PubMed  Google Scholar 

  • Haxby, J. V. (2012). Multivariate pattern analysis of fMRI: the early beginnings. NeuroImage, 62(2), 852–855.

    Article  PubMed  Google Scholar 

  • Hazeltine, E., & Ruthruff, E. (2006). Modality pairing effects and the response selection bottleneck. Psychological Research, 70(6), 504–513.

    Article  PubMed  Google Scholar 

  • Hazeltine, E., Ruthruff, E., & Remington, R. W. (2006). The role of input and output modality pairings in dual-task performance: evidence for content-dependent central interference. Cognitive Psychology, 52(4), 291–345.

    Article  PubMed  Google Scholar 

  • Hélie, S., Ell, S. W., & Ashby, F. G. (2015). Learning robust cortico-cortical associations with the basal ganglia: an integrative review. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 64, 123–135.

    Article  PubMed  Google Scholar 

  • Herculano-Houzel, S. (2009). The human brain in numbers: a linearly scaled-up primate brain. Frontiers in Human Neuroscience, 3, 31.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hesselmann, G., Flandin, G., & Dehaene, S. (2011). Probing the cortical network underlying the psychological refractory period: a combined EEG-fMRI study. NeuroImage, 56(3), 1608–1621.

    Article  PubMed  Google Scholar 

  • Hick, W. E. (1952). On the rate of gain of information. The Quarterly Journal of Experimental Psychology, 4(1), 11–26.

    Article  Google Scholar 

  • Huestegge, L., & Koch, I. (2010). Crossmodal action selection: evidence from dual-task compatibility. Memory & Cognition, 38(4), 493–501.

    Article  Google Scholar 

  • Hyman, R. (1953). Stimulus information as a determinant of reaction time. Journal of Experimental Psychology, 45(3), 188–196.

    Article  PubMed  Google Scholar 

  • Jackson, J. B., & Woolgar, A. (2018). Adaptive coding in the human brain: Distinct object features are encoded by overlapping voxels in frontoparietal cortex. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 108, 25–34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jackson, J., Rich, A. N., Williams, M. A., & Woolgar, A. (2017). Feature-selective Attention in Frontoparietal Cortex: Multivoxel Codes Adjust to Prioritize Task-relevant Information. Journal of Cognitive Neuroscience, 29(2), 310–321.

    Article  PubMed  Google Scholar 

  • Jahanshahi, M., Obeso, I., Rothwell, J. C., & Obeso, J. A. (2015). A fronto-striato-subthalamic-pallidal network for goal-directed and habitual inhibition. Nature Reviews. Neuroscience, 16(12), 719–732.

    Google Scholar 

  • Janczyk, M., Renas, S., & Durst, M. (2018). Identifying the locus of compatibility-based backward crosstalk: Evidence from an extended PRP paradigm. Journal of Experimental Psychology. Human Perception and Performance, 44(2), 261–276.

    Google Scholar 

  • Jiang, Y., Saxe, R., & Kanwisher, N. (2004). Functional magnetic resonance imaging provides new constraints on theories of the psychological refractory period. Psychological Science, 15(6), 390–396.

    Article  PubMed  Google Scholar 

  • Joel, D., Niv, Y., & Ruppin, E. (2002). Actor-critic models of the basal ganglia: new anatomical and computational perspectives. Neural Networks: The Official Journal of the International Neural Network Society, 15(4-6), 535–547.

    Article  Google Scholar 

  • Johnston, J. C., & McCann, R. S. (2006). On the locus of dual-task interference: Is there a bottleneck at the stimulus classification stage? Quarterly Journal of Experimental Psychology, 59(4), 694–719.

    Article  Google Scholar 

  • Klapp, S. T., Maslovat, D., & Jagacinski, R. J. (2019). The bottleneck of the psychological refractory period effect involves timing of response initiation rather than response selection. Psychonomic Bulletin & Review, 26(1), 29–47.

    Article  Google Scholar 

  • Ko, Y.-T., & Miller, J. (2014). Locus of backward crosstalk effects on task 1 in a psychological refractory period task. Experimental Psychology, 61(1), 30–37.

    Article  PubMed  Google Scholar 

  • Lebedev, M. A., Messinger, A., Kralik, J. D., & Wise, S. P. (2004). Representation of attended versus remembered locations in prefrontal cortex. PLoS Biology, 2(11), e365.

    Article  PubMed  PubMed Central  Google Scholar 

  • Levy, J., & Pashler, H. (2008). Task prioritisation in multitasking during driving: opportunity to abort a concurrent task does not insulate braking responses from dual-task slowing. Applied Cognitive Psychology, 22(4), 507–525.

    Article  Google Scholar 

  • Logan, G. D., & Gordon, R. D. (2001). Executive control of visual attention in dual-task situations. Psychological Review, 108(2), 393–434.

    Article  PubMed  Google Scholar 

  • Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature, 453(7197), 869–878.

    Article  PubMed  Google Scholar 

  • Maquestiaux, F., Hartley, A. A., & Bertsch, J. (2004). Can practice overcome age-related differences in the psychological refractory period effect? Psychology and Aging, 19(4), 649–667.

    Article  PubMed  Google Scholar 

  • Maquestiaux, F., Laguë-Beauvais, M., & Bherer, L. (2008). Bypassing the central bottleneck after single-task practice in the psychological refractory period paradigm: Evidence for task automatization and greedy resource … Memory. https://link.springer.com/article/10.3758/MC.36.7.1262

  • Maquestiaux, F., Laguë-Beauvais, M., Ruthruff, E., Hartley, A., & Bherer, L. (2010). Learning to bypass the central bottleneck: declining automaticity with advancing age. Psychology and Aging, 25(1), 177–192.

    Article  PubMed  Google Scholar 

  • Marois, R., & Ivanoff, J. (2005). Capacity limits of information processing in the brain. Trends in Cognitive Sciences, 9(6), 296–305.

    Article  PubMed  Google Scholar 

  • Marois, R., Larson, J. M., Chun, M. M., & Shima, D. (2006). Response-specific sources of dual-task interference in human pre-motor cortex. Psychological Research, 70(6), 436–447.

    Article  PubMed  Google Scholar 

  • Marr, D. (1982). Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. http://papers.cumincad.org/cgi-bin/works/_id=ecaade2013/Show?fafa

  • Marti, S., King, J.-R., & Dehaene, S. (2015). Time-Resolved Decoding of Two Processing Chains during Dual-Task Interference. Neuron, 88(6), 1297–1307.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marti, S., Sigman, M., & Dehaene, S. (2012). A shared cortical bottleneck underlying Attentional Blink and Psychological Refractory Period. NeuroImage, 59(3), 2883–2898.

    Article  PubMed  Google Scholar 

  • Mashour, G. A., Roelfsema, P., Changeux, J.-P., & Dehaene, S. (2020). Conscious Processing and the Global Neuronal Workspace Hypothesis. Neuron, 105(5), 776–798.

    Article  PubMed  PubMed Central  Google Scholar 

  • Messinger, A., Lebedev, M. A., Kralik, J. D., & Wise, S. P. (2009). Multitasking of attention and memory functions in the primate prefrontal cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29(17), 5640–5653.

    Google Scholar 

  • Meyer, D. E., & Kieras, D. E. (1997a). A computational theory of executive cognitive processes and multiple-task performance: Part 1. Basic mechanisms. Psychological Review, 104(1), 3–65.

    Article  PubMed  Google Scholar 

  • Meyer, D. E., & Kieras, D. E. (1997b). A computational theory of executive cognitive processes and multiple-task performance: Part 2. Accounts of psychological refractory-period phenomena. Psychological Review, 104(4), 749–791.

    Article  Google Scholar 

  • Meyers, E. M., Freedman, D. J., Kreiman, G., Miller, E. K., & Poggio, T. (2008). Dynamic population coding of category information in inferior temporal and prefrontal cortex. Journal of Neurophysiology, 100(3), 1407–1419.

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller, J., & Alderton, M. (2006). Backward response-level crosstalk in the psychological refractory period paradigm. Journal of Experimental Psychology. Human Perception and Performance, 32(1), 149–165.

    Google Scholar 

  • Musslick, S., Saxe, A., Özcimder, K., Dey, B., Henselman, G., & Cohen, J. D. (2017). Multitasking Capability Versus Learning Efficiency in Neural Network Architectures. CogSci, 829–834.

    Google Scholar 

  • Navon, D., & Miller, J. (2002). Queuing or sharing? A critical evaluation of the single-bottleneck notion. Cognitive Psychology, 44(3), 193–251.

    Article  PubMed  Google Scholar 

  • Nichols, T. E. (2012). Multiple testing corrections, nonparametric methods, and random field theory. NeuroImage, 62(2), 811–815.

    Article  PubMed  Google Scholar 

  • Olton, D. S., Wenk, G. L., Church, R. M., & Meck, W. H. (1988). Attention and the frontal cortex as examined by simultaneous temporal processing. Neuropsychologia, 26(2), 307–318.

    Article  PubMed  Google Scholar 

  • Paliwal, M., & Kumar, U. A. (2009). Neural networks and statistical techniques: A review of applications. Expert Systems with Applications, 36(1), 2–17.

    Article  Google Scholar 

  • Pang, K. C., Yoder, R. M., & Olton, D. S. (2001). Neurons in the lateral agranular frontal cortex have divided attention correlates in a simultaneous temporal processing task. Neuroscience, 103(3), 615–628.

    Article  PubMed  Google Scholar 

  • Pashler, H. (1984). Processing stages in overlapping tasks: evidence for a central bottleneck. Journal of Experimental Psychology. Human Perception and Performance, 10(3), 358–377.

    Google Scholar 

  • Pashler, H. (1990). Do response modality effects support multiprocessor models of divided attention? Journal of Experimental Psychology. Human Perception and Performance, 16(4), 826–842.

    Google Scholar 

  • Pashler, H. (1994). Dual-task interference in simple tasks: data and theory. Psychological Bulletin, 116(2), 220–244.

    Article  PubMed  Google Scholar 

  • Pashler, H., Jolicœur, P., Dell’Acqua, R., Crebolder, J., Goschke, T., De Jong, R., Meiran, N., Ivry, R. B., & Hazeltine, E. (2000). Task switching and multitask performance. In S. Monsell (Ed.), Control of cognitive processes: Attention and performance XVIII, (Vol. 779, pp. 275–423). The MIT Press, xvi.

    Google Scholar 

  • Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: theory and data for two-choice decision tasks. Neural Computation, 20(4), 873–922.

    Article  PubMed  PubMed Central  Google Scholar 

  • Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992). Temporary suppression of visual processing in an RSVP task: an attentional blink? Journal of Experimental Psychology. Human Perception and Performance, 18(3), 849–860.

    Google Scholar 

  • Redish, A. D., Jensen, S., Johnson, A., & Kurth-Nelson, Z. (2007). Reconciling reinforcement learning models with behavioral extinction and renewal: implications for addiction, relapse, and problem gambling. Psychological Review, 114(3), 784–805.

    Article  PubMed  Google Scholar 

  • Roelfsema, P. R., Lamme, V. A. F., & Spekreijse, H. (2000). The implementation of visual routines. Vision Research, 40(10), 1385–1411.

    Article  PubMed  Google Scholar 

  • Ruthruff, E., Johnston, J. C., Van Selst, M., Whitsell, S., & Remington, R. (2003). Vanishing dual-task interference after practice: Has the bottleneck been eliminated or is it merely latent? Journal of Experimental Psychology: Human Perception and Performance, 29(2), 280–289.

    Google Scholar 

  • Ruthruff, E., Hazeltine, E., & Remington, R. W. (2006a). What causes residual dual-task interference after practice? Psychological Research, 70(6), 494–503.

    Article  PubMed  Google Scholar 

  • Ruthruff, E., Van Selst, M., Johnston, J. C., & Remington, R. (2006b). How does practice reduce dual-task interference: integration, automatization, or just stage-shortening? Psychological Research, 70(2), 125–142.

    Article  PubMed  Google Scholar 

  • Sacerdoti, E. D. (1974). Planning in a hierarchy of abstraction spaces. Artificial Intelligence, 5(2), 115–135.

    Article  Google Scholar 

  • Sagiv, Y., Musslick, S., Niv, Y., & Cohen, J. D. (2018). Efficiency of learning vs. processing: Towards a normative theory of multitasking. CogSci. http://mindmodeling.org/cogsci2018/papers/0200/0200.pdf

  • Salvucci, D. D., & Taatgen, N. A. (2008). Threaded cognition: an integrated theory of concurrent multitasking. Psychological Review, 115(1), 101–130.

    Article  PubMed  Google Scholar 

  • Schmitz, T. W., & Duncan, J. (2018). Normalization and the Cholinergic Microcircuit: A Unified Basis for Attention. Trends in Cognitive Sciences, 22(5), 422–437.

    Article  PubMed  Google Scholar 

  • Schubert, T., & Szameitat, A. J. (2003). Functional neuroanatomy of interference in overlapping dual tasks: an fMRI study. Brain Research. Cognitive Brain Research, 17(3), 733–746.

    Google Scholar 

  • Serences, J. T., & Saproo, S. (2012). Computational advances towards linking BOLD and behavior. Neuropsychologia, 50(4), 435–446.

    Article  PubMed  Google Scholar 

  • Sergent, C., Baillet, S., & Dehaene, S. (2005). Timing of the brain events underlying access to consciousness during the attentional blink. Nature Neuroscience, 8(10), 1391–1400.

    Article  PubMed  Google Scholar 

  • Sigman, M., & Dehaene, S. (2008). Brain mechanisms of serial and parallel processing during dual-task performance. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 28(30), 7585–7598.

    Google Scholar 

  • Smith, K. S., & Graybiel, A. M. (2013). A dual operator view of habitual behavior reflecting cortical and striatal dynamics. Neuron, 79(2), 361–374.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stelzel, C., Kraft, A., Brandt, S. A., & Schubert, T. (2008). Dissociable neural effects of task order control and task set maintenance during dual-task processing. Journal of Cognitive Neuroscience, 20(4), 613–628.

    Article  PubMed  Google Scholar 

  • Stelzel, C., Schumacher, E. H., Schubert, T., & D’Esposito, M. (2006). The neural effect of stimulus-response modality compatibility on dual-task performance: an fMRI study. Psychological Research, 70(6), 514–525.

    Article  PubMed  Google Scholar 

  • Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders’ method. Acta Psychologica, 30(0), 276–315.

    Google Scholar 

  • Stokes, M. G., Kusunoki, M., Sigala, N., Nili, H., Gaffan, D., & Duncan, J. (2013). Dynamic coding for cognitive control in prefrontal cortex. Neuron, 78(2), 364–375.

    Article  PubMed  PubMed Central  Google Scholar 

  • Strobach, T. (2019). The dual-task practice advantage: Empirical evidence and cognitive mechanisms. Psychonomic Bulletin & Review. https://doi.org/10.3758/s13423-019-01619-4

  • Strobach, T., Frensch, P., Müller, H. J., & Schubert, T. (2012a). Testing the limits of optimizing dual-task performance in younger and older adults. Frontiers in Human Neuroscience, 6, 39.

    Article  PubMed  PubMed Central  Google Scholar 

  • Strobach, T., Frensch, P., Müller, H., & Schubert, T. (2012b). Age- and practice-related influences on dual-task costs and compensation mechanisms under optimal conditions of dual-task performance. Neuropsychology, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition, 19(1-2), 222–247.

    Google Scholar 

  • Strobach, T., Schütz, A., & Schubert, T. (2015). On the importance of Task 1 and error performance measures in PRP dual-task studies. Frontiers in Psychology, 6, 403.

    PubMed  PubMed Central  Google Scholar 

  • Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT Press.

    Google Scholar 

  • Szameitat, A. J., Lepsien, J., von Cramon, D. Y., Sterr, A., & Schubert, T. (2006). Task-order coordination in dual-task performance and the lateral prefrontal cortex: an event-related fMRI study. Psychological Research, 70(6), 541–552.

    Article  PubMed  Google Scholar 

  • Szameitat, A. J., Schubert, T., & Müller, H. J. (2011). How to test for dual-task-specific effects in brain imaging studies – an evaluation of potential analysis methods. NeuroImage, 54(3), 1765–1773.

    Article  PubMed  Google Scholar 

  • Szameitat, A. J., Schubert, T., Müller, K., & Von Cramon, D. Y. (2002). Localization of executive functions in dual-task performance with fMRI. Journal of Cognitive Neuroscience, 14(8), 1184–1199.

    Article  PubMed  Google Scholar 

  • Tamber-Rosenau, B. J., Dux, P. E., Tombu, M. N., Asplund, C. L., & Marois, R. (2013). Amodal processing in human prefrontal cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33(28), 11573–11587.

    Google Scholar 

  • Telford, C. W. (1931). The refractory phase of voluntary and associative responses. Journal of Experimental Psychology. http://psycnet.apa.org/record/1931-04368-001

  • Tepper, J. M., & Plenz, D. (2006). Striatal Cell Types and Their Interaction. Global Brain Function, 127.

    Google Scholar 

  • Thoma, P., Koch, B., Heyder, K., Schwarz, M., & Daum, I. (2008). Subcortical contributions to multitasking and response inhibition. Behavioural Brain Research, 194(2), 214–222.

    Article  PubMed  Google Scholar 

  • Tombu, M., & Jolicœur, P. (2003). A central capacity sharing model of dual-task performance. Journal of Experimental Psychology. Human Perception and Performance, 29(1), 3–18.

    Google Scholar 

  • Ulrich, R., & Miller, J. (2008). Response grouping in the psychological refractory period (PRP) paradigm: models and contamination effects. Cognitive Psychology, 57(2), 75–121.

    Article  PubMed  Google Scholar 

  • Watanabe, K., & Funahashi, S. (2014). Neural mechanisms of dual-task interference and cognitive capacity limitation in the prefrontal cortex. Nature Neuroscience, 17(4), 601–611.

    Article  PubMed  Google Scholar 

  • Watanabe, K., & Funahashi, S. (2018). Toward an understanding of the neural mechanisms underlying dual-task performance: Contribution of comparative approaches using animal models. Neuroscience and Biobehavioral Reviews, 84, 12–28.

    Article  PubMed  Google Scholar 

  • Welford, A. T. (1952). The “Psychological Refractory Period” and the timing of high-speed performance – a review and a theory. The British Journal of Psychology. General Section, 43(1), 2–19.

    Google Scholar 

  • Welford, A. T. (1959). Evidence of a single-channel decision mechanism limiting performance in a serial reaction task. The Quarterly Journal of Experimental Psychology, 11(4), 193–210.

    Article  Google Scholar 

  • Welford, A. T. (1967). Single-channel operation in the brain. Acta Psychologica, 27, 5–22.

    Article  PubMed  Google Scholar 

  • Woolgar, A., Hampshire, A., Thompson, R., & Duncan, J. (2011). Adaptive coding of task-relevant information in human frontoparietal cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31(41), 14592–14599.

    Google Scholar 

  • Woolgar, A., Jackson, J., & Duncan, J. (2016). Coding of Visual, Auditory, Rule, and Response Information in the Brain: 10 Years of Multivoxel Pattern Analysis. Journal of Cognitive Neuroscience, 28(10), 1433–1454.

    Article  PubMed  Google Scholar 

  • Yildiz, A., & Beste, C. (2015). Parallel and serial processing in dual-tasking differentially involves mechanisms in the striatum and the lateral prefrontal cortex. Brain Structure & Function, 220(6), 3131–3142.

    Article  Google Scholar 

  • Yin, H. H., & Knowlton, B. J. (2006). The role of the basal ganglia in habit formation. Nature Reviews. Neuroscience, 7(6), 464–476.

    Google Scholar 

  • Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in deep neural networks? In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, & K. Q. Weinberger (Eds.), Advances in Neural Information Processing Systems 27 (pp. 3320–3328). Curran Associates, Inc.

    Google Scholar 

  • Zylberberg, A., Fernández Slezak, D., Roelfsema, P. R., Dehaene, S., & Sigman, M. (2010). The brain’s router: a cortical network model of serial processing in the primate brain. PLoS Computational Biology, 6(4), e1000765.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garner, K.G., Dux, P.E. (2022). The Neural Basis of Simultaneous Multitasking. In: Kiesel, A., Johannsen, L., Koch, I., Müller, H. (eds) Handbook of Human Multitasking. Springer, Cham. https://doi.org/10.1007/978-3-031-04760-2_6

Download citation

Publish with us

Policies and ethics