Skip to main content

Transcription Factor-Centric Approach to Identify Non-recurring Putative Regulatory Drivers in Cancer

  • Conference paper
  • First Online:
Research in Computational Molecular Biology (RECOMB 2022)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 13278))

  • 1926 Accesses

Abstract

Recent efforts to sequence the genomes of thousands of matched normal-tumor samples have led to the identification of millions of somatic mutations, the majority of which are non-coding. Most of these mutations are believed to be passengers, but a small number of non-coding mutations could contribute to tumor initiation or progression, e.g. by leading to dysregulation of gene expression. Efforts to identify putative regulatory drivers rely primarily on information about the recurrence of mutations across tumor samples. However, in regulatory regions of the genome, individual mutations are rarely seen in more than one donor. Instead of using recurrence information, here we present a method to prioritize putative regulatory driver mutations based on the magnitude of their effects on transcription factor-DNA binding. For each gene, we integrate the effects of mutations across all its regulatory regions, and we ask whether these effects are larger than expected by chance, given the mutation spectra observed in regulatory DNA in the cohort of interest. We applied our approach to analyze mutations in a liver cancer data set with ample somatic mutation and gene expression data available. By combining the effects of mutations across all regulatory regions of each gene, we identified dozens of genes whose regulation in tumor cells is likely to be significantly perturbed by non-coding mutations. Overall, our results show that focusing on the functional effects of non-coding mutations, rather than their recurrence, has the potential to prioritize putative regulatory drivers and the genes they dysregulate in tumor cells.

J. Zhao and V. Martin—The authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium: Pan-cancer analysis of whole genomes. Nature 578(7793), 82–93 (2020)

    Google Scholar 

  2. Khurana, E., Fu, Y., Chakravarty, D., Demichelis, F., Rubin, M., Gerstein, M.: Role of non-coding sequence variants in cancer. Nat. Rev. Genet. 17(2), 93–108 (2016)

    Article  Google Scholar 

  3. Elliott, K., Larsson, E.: Non-coding driver mutations in human cancer. Nat. Rev. Cancer 21(8), 500–509 (2021)

    Article  Google Scholar 

  4. Lochovsky, L., Zhang, J., Fu, Y., Khurana, E., Gerstein, M.: LARVA: an integrative framework for large-scale analysis of recurrent variants in noncoding annotations. Nucleic Acids Res. 43(17), 8123–8134 (2015)

    Article  Google Scholar 

  5. Lochovsky, L., Zhang, J., Gerstein, M.: MOAT: efficient detection of highly mutated regions with the mutations overburdening annotations tool. Bioinformatics 34(6), 1031–1033 (2018)

    Article  Google Scholar 

  6. Rheinbay, E., et al.: Recurrent and functional regulatory mutations in breast cancer. Nature 547(7661), 55–60 (2017)

    Article  Google Scholar 

  7. Weinhold, N., Jacobsen, A., Schultz, N., Sander, C., Lee, W.: Genome-wide analysis of noncoding regulatory mutations in cancer. Nat. Genet. 46(11), 1160–1165 (2014)

    Article  Google Scholar 

  8. Lawrence, M.S., et al.: Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499(7457), 214–218 (2013)

    Article  Google Scholar 

  9. Rheinbay, E., et al.: Analyses of non-coding somatic drivers in 2,658 cancer whole genomes. Nature 578(7793), 102–111 (2020)

    Article  Google Scholar 

  10. Heinz, S., et al.: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38(4), 576–589 (2010)

    Article  Google Scholar 

  11. Link, V.M., Romanoski, C.E., Metzler, D., Glass, C.K.: MMARGE: motif mutation analysis for regulatory genomic elements. Nucleic Acids Res. 46(14), 7006–7021 (2018)

    Article  Google Scholar 

  12. Shen, Z., Hoeksema, M.A., Ouyang, Z., Benner, C., Glass, C.K.: MAGGIE: leveraging genetic variation to identify DNA sequence motifs mediating transcription factor binding and function. Bioinformatics 36(Suppl_1), i84–i92 (2020)

    Google Scholar 

  13. Horn, S., et al.: TERT promoter mutations in familial and sporadic melanoma. Science 339(6122), 959–961 (2013)

    Article  Google Scholar 

  14. Huang, F.W., Hodis, E., Xu, M.J., Kryukov, G.V., Chin, L., Garraway, L.A.: Highly recurrent TERT promoter mutations in human melanoma. Science 339(6122), 957–959 (2013)

    Article  Google Scholar 

  15. Buisson, R., et al.: Passenger hotspot mutations in cancer driven by APOBEC3A and mesoscale genomic features. Science 364(6447), 06 (2019)

    Google Scholar 

  16. Mas-Ponte, D., Supek, F.: DNA mismatch repair promotes APOBEC3-mediated diffuse hypermutation in human cancers. Nat. Genet. 52(9), 958–968 (2020)

    Article  Google Scholar 

  17. Perera, D., Poulos, R.C., Shah, A., Beck, D., Pimanda, J.E., Wong, J.W.: Differential DNA repair underlies mutation hotspots at active promoters in cancer genomes. Nature 532(7598), 259–263 (2016)

    Article  Google Scholar 

  18. Kim, E., et al.: Systematic functional interrogation of rare cancer variants identifies oncogenic alleles. Cancer Discov. 6(7), 714–726 (2016)

    Article  Google Scholar 

  19. Martin, V., Zhao, J., Afek, A., Mielko, Z., Gordân, R.: QBiC-Pred: quantitative predictions of transcription factor binding changes due to sequence variants. Nucleic Acids Res. 47(W1), W127–W135 (2019)

    Article  Google Scholar 

  20. Zhao, J., Li, D., Seo, J., Allen, A.S., Gordân, R.: Quantifying the impact of non-coding variants on transcription factor-DNA binding. Res. Comput. Mol. Biol. 10229, 336–352 (2017)

    Article  Google Scholar 

  21. O’Leary, N.A., et al.: Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44(D1), D733-745 (2016)

    Article  Google Scholar 

  22. Tweedie, S., et al.: Genenames.org: the HGNC and VGNC resources in 2021. Nucleic Acids Res. 49(D1), D939–D946 (2021)

    Article  Google Scholar 

  23. Andersson, R., et al.: An atlas of active enhancers across human cell types and tissues. Nature 507(7493), 455–461 (2014)

    Google Scholar 

  24. Lizio, M., et al.: Gateways to the FANTOM5 promoter level mammalian expression atlas. Genome Biol. 16, 22 (2015)

    Article  Google Scholar 

  25. Alexandrov, L.B., et al.: The repertoire of mutational signatures in human cancer. Nature 578(7793), 94–101 (2020)

    Article  Google Scholar 

  26. Jusakul, A., et al.: Whole-genome and epigenomic landscapes of etiologically distinct subtypes of cholangiocarcinoma. Cancer Discov. 7(10), 1116–1135 (2017)

    Article  Google Scholar 

  27. Fisher, R.A.: Statistical Methods for Research Workers, 4th edn. Oliver & Boyd, Edinburgh (1934)

    MATH  Google Scholar 

  28. Lawrence, M.S., et al.: Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505(7484), 495–501 (2014)

    Article  Google Scholar 

  29. Araya, C.L., et al.: Identification of significantly mutated regions across cancer types highlights a rich landscape of functional molecular alterations. Nat. Genet. 48(2), 117–125 (2016)

    Article  Google Scholar 

  30. Lipták, T.: On the combination of independent tests. Magyar Tud Akad Mat Kutato Int Kozl 3, 171–197 (1958)

    MATH  Google Scholar 

  31. Whitlock, M.C.: Combining probability from independent tests: the weighted Z-method is superior to Fisher’s approach. J. Evol. Biol. 18(5), 1368–1373 (2005)

    Article  Google Scholar 

  32. Zaykin, D.V.: Optimally weighted Z-test is a powerful method for combining probabilities in meta-analysis. J. Evol. Biol. 24(8), 1836–1841 (2011)

    Article  Google Scholar 

  33. van Zwet, W.R., Oosterhoff, J.: On the combination of independent test statistics. Ann. Math. Stat. 38(3), 659–680 (1967)

    Article  MathSciNet  Google Scholar 

  34. Heard, N.A., Rubin-Delanchy, P.: Choosing between methods of combining \(p\)-values. Biometrika 105(1), 239–246 (2018)

    Article  MathSciNet  Google Scholar 

  35. Hochberg, Y.: A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75(4), 800–802 (1988)

    Article  MathSciNet  Google Scholar 

  36. Uhlen, M., et al.: A pathology atlas of the human cancer transcriptome. Science 357(6352), 08 (2017)

    Article  Google Scholar 

  37. Li, Y., et al.: ShRNA-targeted centromere protein A inhibits hepatocellular carcinoma growth. PLoS ONE 6(3), e17794 (2011)

    Article  Google Scholar 

  38. He, B., et al.: CTNNA3 is a tumor suppressor in hepatocellular carcinomas and is inhibited by miR-425. Oncotarget 7(7), 8078–8089 (2016)

    Google Scholar 

  39. Li, M., Xia, S., Shi, P.: DPM1 expression as a potential prognostic tumor marker in hepatocellular carcinoma. PeerJ 8, e10307 (2020)

    Article  Google Scholar 

  40. Bianchi, M., et al.: Distribution of metastatic sites in renal cell carcinoma: a population-based analysis. Ann. Oncol. 23(4), 973–980 (2012)

    Article  Google Scholar 

  41. Sacco, J.J., et al.: The deubiquitylase Ataxin-3 restricts PTEN transcription in lung cancer cells. Oncogene 33(33), 4265–4272 (2014)

    Google Scholar 

  42. Zou, H., Chen, H., Zhou, Z., Wan, Y., Liu, Z.: ATXN3 promotes breast cancer metastasis by deubiquitinating KLF4. Cancer Lett. 467, 19–28 (2019)

    Google Scholar 

  43. Otálora-Otálora, B.A., Henríquez, B., López-Kleine, L., Rojas, A.: RUNX family: oncogenes or tumor suppressors (review). Oncol. Rep. 42(1), 3–19 (2019)

    Google Scholar 

  44. Liu, E.M., Martinez-Fundichely, A., Bollapragada, R., Spiewack, M., Khurana, E.: CNCDatabase: a database of non-coding cancer drivers. NAR 49(D1), D1094–D1101 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raluca Gordân .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, J., Martin, V., Gordân, R. (2022). Transcription Factor-Centric Approach to Identify Non-recurring Putative Regulatory Drivers in Cancer. In: Pe'er, I. (eds) Research in Computational Molecular Biology. RECOMB 2022. Lecture Notes in Computer Science(), vol 13278. Springer, Cham. https://doi.org/10.1007/978-3-031-04749-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04749-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04748-0

  • Online ISBN: 978-3-031-04749-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics