Skip to main content

Numerical and Theoretical Analysis for Optimal Shape Inverse Problems

  • Conference paper
  • First Online:
Nonlinear Analysis, Geometry and Applications

Part of the book series: Trends in Mathematics ((TM))

  • 270 Accesses

Abstract

In this paper, we are interested in the numerical shape recognition. This work takes into account some theoretical results already established the paper published by Ndiaye et al. (Bull Math Anal Appl 4(1):91–103, 2012) and provides additional tools of shape optimization under constraints described by non linear parabolic PDE. We propose also algorithms and numerical methods to recognize an unattainable part of a bounded domain in which an elliptic linear boundary value problem is satisfied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The software FreeFem++ software, developed at UPMC by F. Hecht and O. Pironneau, is a high-level integrated developing environment for solving (system of) partial differential equations in two and three dimensions of space.

References

  1. M. Choulli, Une introduction aux problèmes inverses elliptiques et paraboliques., volume 65 of Mathématiques & Applications (Springer, Berlin, 2009)

    Google Scholar 

  2. V. Isakov, Inverse Problems for Partial Differential Equations, 2nd edn., volume 127 of Applied Mathematical Sciences (Springer, New York, 2006)

    Google Scholar 

  3. I. Faye, A. Sy, D. Seck, On topological optimization and pollution in porous media, in Mathematical Modeling, Simulation, Visualization and e-learning. Proceedings of an International Workshop Held at Rockefeller Foundation’s Bellagio Conference Center, Milan, Italy, November 20–26, 2006 (Springer, Berlin, 2008), pp 209–237

    Google Scholar 

  4. L. Ndiaye, I. Ly, D. Seck, A shape reconstruction problem with the Laplace operator. Bull. Math. Anal. Appl. 4(1), 91–103 (2012)

    MathSciNet  MATH  Google Scholar 

  5. G.I. Sadio, D. Seck, Shape reconstruction in a non-linear problem, in Nonlinear Analysis, Geometry and Applications. Proceedings of the First Biennial International Research Symposium, NLAGA-BIRS, Dakar, Senegal, June 24–28, 2019 (Birkhäuser, Cham, 2020), pp. 379–397

    Google Scholar 

  6. M.C. Delfour, J.P. Zoésio, Shape sensitivity analysis via min max differentiability. SIAM J. Control Optim. 26, 834–862 (1988)

    Article  MathSciNet  Google Scholar 

  7. M.C. Delfour, J.P. Zolesio, Analyse des problèmes de forme par la dérivation des minimax, in Annales de l’IHP Analyse non linéaire, vol. 6 (1989), pp. 211–227

    Google Scholar 

  8. K. Sturm, On Shape Optimization with Non-linear Partial Differential Equations. PhD thesis, 10 2014

    Google Scholar 

  9. K. Sturm, Minimax lagrangian approach to the differentiability of nonlinear pde constrained shape functions without saddle point assumption. SIAM J. Control Optim. 53(4), 2017–2039 (2015)

    Article  MathSciNet  Google Scholar 

  10. M.C. Delfour, K. Sturm, Parametric semidifferentiability of minimax of Lagrangians: averaged adjoint approach. J. Convex Anal. 24(4), 1117–1142 (2017)

    MathSciNet  MATH  Google Scholar 

  11. M.C. Delfour, Control, shape, and topological derivatives via minimax differentiability of Lagrangians, in Numerical Methods for Optimal Control Problems. Proceedings of the Workshop, Rome, Italy, June 19–23, 2017 (Springer, Cham, 2018), pp. 137–164

    Google Scholar 

  12. R. Correa, A. Seeger, Directional derivative of a minimax function. Nonlinear Anal. Theory Methods Appl. 9(1), 13–22 (1985)

    Article  MathSciNet  Google Scholar 

  13. M. Delfour, J.P. Zolésio (2011) Shapes and Geometries: Metrics, Analysis, Differential Calculus and Optimization, volume 22 of Advances in Design and Control, SIAM

    Google Scholar 

  14. O. Kavian, Introduction à la théorie des points critiques et applications aux problèmes elliptiques., vol. 13 (Springer, Paris, 1993)

    Google Scholar 

  15. C. Dapogny, P. Frey, F. Omnes, Y. Privat, Geometrical shape optimization in fluid mechanics using freefem++. Struct. Multidiscip. Optim. 58(6), 2761–2788 (2018)

    Article  MathSciNet  Google Scholar 

  16. A. Seck, Optimisation de forme géométrique et topologique pour les équations de navier stokes en 2d. PhD, Université Cheick Anta Diop de Dakar, Sénégal, 2021

    Google Scholar 

  17. J. Sokołowski, J.P. Zolesio, Introduction to Shape Optimization: Shape Sensitivity Analysis, vol. 16 (Springer, Berlin, 1992)

    Book  Google Scholar 

  18. A. Henrot, M. Pierre, Shape Variation and Optimization. A Geometrical Analysis, volume 28 of Tracts in Mathematics (European Mathematical Society (EMS), Zürich, 2018)

    Google Scholar 

  19. M.C. Delfour, K. Sturm, Minimax differentiability via the averaged adjoint for control/shape sensitivity. IFAC-PapersOnLine 49(8), 142–149 (2016)

    Article  MathSciNet  Google Scholar 

  20. J. Nocedal, S. Wright, Numerical Optimization (Springer Science & Business Media, New York, 2006)

    MATH  Google Scholar 

  21. B. Mohammadi, O. Pironneau, Applied Shape Optimization for Fluids, 2nd edn. (Oxford University Press, Oxford, 2009)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sadio, G.I., Seck, A., Seck, D. (2022). Numerical and Theoretical Analysis for Optimal Shape Inverse Problems. In: Seck, D., Kangni, K., Nang, P., Salomon Sambou, M. (eds) Nonlinear Analysis, Geometry and Applications. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-04616-2_12

Download citation

Publish with us

Policies and ethics