Skip to main content

A Bi-level Individualized Adaptive Learning Recommendation System Based on Topic Modeling

  • Conference paper
  • First Online:
Quantitative Psychology (IMPS 2021)

Abstract

Adaptive learning offers real attention to individual students’ differences and fits different needs from students. This study proposes a bi-level recommendation system with topic models, gradient descent, and a content-based filtering algorithm. In the first level, the learning materials were analyzed by a topic model, and topic proportions to each short item in each learning material were yielded as representation features. The second level contains a measurement component and a recommendation strategy component which employ gradient descent and content-based filtering algorithm to analyze personal profile vectors and make an individualized recommendation. An empirical data consists of cumulative assessments that were used as a demonstration of the recommendation process. Results have suggested that the distribution to the estimated values in the person profile vectors were related to the ability estimation from the Rasch model, and students with similar profile vectors could be recommended with the same learning material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amos, B., & Yarats, D. (2020). The differentiable cross-entropy method. Paper presented at the International Conference on Machine Learning.

    Google Scholar 

  • Apaza, R. G., Cervantes, E. V., Quispe, L. C., & Luna, J. O. (2014). Online courses recommendation based on LDA. Paper presented at the SIMBig.

    Google Scholar 

  • Beagley, J. E., & Capaldi, M. (2016). The effect of cumulative tests on the final exam. Primus, 26(9), 878–888.

    Article  Google Scholar 

  • Bian, L., & Xie, Y. (2010). Research on the adaptive strategy of adaptive learning system. Paper presented at the International Conference on Technologies for E-Learning and Digital Entertainment.

    Google Scholar 

  • Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. The Journal of Machine Learning Research, 3, 993–1022.

    MATH  Google Scholar 

  • Cao, Y., Li, W., & Zheng, D. (2019). A hybrid recommendation approach using LDA and probabilistic matrix factorization. Cluster Computing, 22(4), 8811–8821.

    Article  Google Scholar 

  • Castells, P., Fernandez, M., & Vallet, D. (2006). An adaptation of the vector-space model for ontology-based information retrieval. IEEE Transactions on Knowledge Data Engineering, 19(2), 261–272.

    Article  Google Scholar 

  • Chen, Y., Li, X., Liu, J., & Ying, Z. (2018). Recommendation system for adaptive learning. Applied Psychological Measurement, 42(1), 24–41.

    Article  Google Scholar 

  • Cheng, Y., & Bu, X. (2020). Research on key technologies of personalized education resource recommendation system based on big data environment. Paper presented at the Journal of Physics: Conference Series.

    Google Scholar 

  • Chou, Y.-T., & Wang, W.-C. (2010). Checking dimensionality in item response models with principal component analysis on standardized residuals. Educational and Psychological Measurement, 70(5), 717–731.

    Article  Google Scholar 

  • Cleghorn, G. D. (1986). Policies of US medical schools on the use of the NBME Part I and Part II examinations. Journal of Medical Education, 61(12), 954–957.

    Google Scholar 

  • De Boer, P.-T., Kroese, D. P., Mannor, S., & Rubinstein, R. (2005). A tutorial on the cross-entropy method. Annals of Operations Research, 134(1), 19–67.

    Article  MathSciNet  Google Scholar 

  • den Boer, A. W., Verkoeijen, P. P., & Heijltjes, A. E. (2021). Comparing formative and summative cumulative assessment: Two field experiments in an applied university engineering course. Psychology Learning & Teaching, 20(1), 128–143.

    Article  Google Scholar 

  • Dhawan, S. (2020). Online learning: A panacea in the time of COVID-19 crisis. Journal of Educational Technology Systems, 49(1), 5–22.

    Article  Google Scholar 

  • Engelhard, G. Jr. (2013). Invariant measurement: Using Rasch models in the social, behavioral, and health sciences. Routledge.

    Book  Google Scholar 

  • Georgia Center for Assessment. (2018). English language and Arts cumulative Assessment.

    Google Scholar 

  • Ghauth, K. I., & Abdullah, N. A. (2010). Learning materials recommendation using good learners’ ratings and content-based filtering. Educational Technology Research and Development, 58(6), 711–727.

    Article  Google Scholar 

  • Imhof, C., Bergamin, P., & McGarrity, S. (2020). Implementation of adaptive learning systems: Current state and potential. In Online teaching and learning in higher education (pp. 93–115). Springer.

    Google Scholar 

  • Koedinger, K. R., Brunskill, E., Baker, R. S., McLaughlin, E. A., & Stamper, J. (2013). New potentials for data-driven intelligent tutoring system development and optimization. AI Magazine, 34(3), 27–41.

    Article  Google Scholar 

  • Kuang, W., Luo, N., & Sun, Z. (2011). Resource recommendation based on topic model for educational system. Paper presented at the 2011 6th IEEE Joint International Information Technology and Artificial Intelligence Conference.

    Google Scholar 

  • Liang, Q., & Hainan, N. C. (2019). Adaptive learning model and implementation based on big data. Paper presented at the 2019 2nd International Conference on Artificial Intelligence and Big Data (ICAIBD).

    Google Scholar 

  • Lin, Q., He, S., & Deng, Y. (2021). Method of personalized educational resource recommendation based on LDA and learner’s behavior. The International Journal of Electrical Engineering & Education, 0020720920983511.

    Google Scholar 

  • Mavroudi, A., Giannakos, M., & Krogstie, J. (2018). Supporting adaptive learning pathways through the use of learning analytics: Developments, challenges and future opportunities. Interactive Learning Environments, 26(2), 206–220.

    Article  Google Scholar 

  • Mei, Q., Shen, X., & Zhai, C. (2007). Automatic labeling of multinomial topic models. Paper presented at the Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

    Google Scholar 

  • Pfennig, A. (2020). Improving learning outcome for GSL (German as a Second Language) students in a blended learning cumulative assessment material science course. Paper presented at the Int. Conf. on Education and E-Learning ICEEL 2020.

    Google Scholar 

  • Romero, C., Ventura, S., Delgado, J. A., & De Bra, P. (2007). Personalized links recommendation based on data mining in adaptive educational hypermedia systems. Paper presented at the European conference on technology enhanced learning.

    Google Scholar 

  • Ryan, G. J., & Nykamp, D. (2000). Use of cumulative examinations at US schools of pharmacy. American Journal of Pharmaceutical Education, 64(4), 409–412.

    Google Scholar 

  • Tang, X., Chen, Y., Li, X., Liu, J., & Ying, Z. (2019). A reinforcement learning approach to personalized learning recommendation systems. British Journal of Mathematical and Statistical Psychology, 72(1), 108–135.

    Article  Google Scholar 

  • Tong, Z., & Zhang, H. (2016). A text mining research based on LDA topic modelling. Paper presented at the International Conference on Computer Science, Engineering and Information Technology.

    Google Scholar 

  • United States Department of Education. (2017). Reimagining the role of technology in education: 2017 National Education Technology Plan update. Washington, DC Retrieved from https://tech.ed.gov/files/2017/01/NETP17.pdf

  • USMLE. (2014). Federation of State Medical Boards of the United States and the National Board of Medical Examiners. USMLE Bulletin of Information.

    Google Scholar 

  • Wheeler, J. M., Cohen, A. S., Xiong, J., Lee, J., & Choi, H.-J. (2021). Sample size for latent Dirichlet allocation of constructed-response items. In Quantitative Psychology (pp. 263–273). Springer.

    Google Scholar 

  • Xiong, J., Choi, H.-J., Kim, S., Kwak, M., & Cohen, A. S. (2019). Topic Modeling of Constructed-Response Answers on Social Study Assessments. In The annual meeting of the psychometric Society (pp. 263–274). Springer, Cham.

    Google Scholar 

  • Yan, X., Guo, J., Lan, Y., & Cheng, X. (2013). A biterm topic model for short texts. Paper presented at the Proceedings of the 22nd International Conference on World Wide Web.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiawei Xiong .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Data

Cumulative Assessments are aligned and assess a representation of the Georgia Standards of Excellence (GSE). These cumulative forms can help teachers to gather strong evidence on student learning toward the overall end-of-year expectations at each grade level. The sample assessment items were provided on this web site: https://www.lennections.com/assesslets-science

1.2 R Code

############################################################ ##########################read data######################### ############################################################ data<-read.csv(file='data.csv', header=T, sep=",", fill=T,       stringsAsFactors = F) #processing data2    <- udpipe(data, "english") biterms <- as.data.table(data2)[, cooccurrence(x = lemma,                                 relevant = upos %in%                                 c("NOUN",                                 "ADJ", "VERB") &                                 nchar(lemma) > 2 & !lemma                                 %in%                                 stopwords("en"),                                 skipgram = 3),                                 by = list(doc_id)] data3 <- data2[, c("doc_id", "lemma")] ############################################################ ####################decide optimal numbers################## ############################################################ cd_k<-seq(2,10) #JSD model=NULL for (i in cd_k) {     model[[i]]   <- BTM(data3, biterms = biterms,     k = i,     alpha = 1,     beta = 1,     window = 3,     iter = 5000, background = F,     trace = F,detailed = F) } # Compute Jensen-Shannon Divergence for each value in model scores <- predict(model[[1]], newdata = data3) colnames(scores)<-c("topic1","topic2","topic3","topic4") JSD <- function(p, q) { m <- 0.5 ∗ (p + q) divergence <-            0.5 ∗ (sum(p ∗ log(p / m)) + sum(q ∗ log(q / m))) return(divergence) } n <- dim(scores)[1] X <- matrix(rep(0, n∗n), nrow=n, ncol=n) indexes <- t(combn(1:nrow(scores), m=2)) for (r in 1:nrow(indexes)) { i <- indexes[r, ][1] j <- indexes[r, ][2] p <- scores[i, ] q <- scores[j, ] X[i, j] <- JSD(p,q) } ############################################################ ####################Estimation and predict################## ############################################################ #read students' response data student = read.csv(file='4_Cumulative_Assesslet.csv',                    header=T, sep=",",                    fill=T,stringsAsFactors = F) #M4 is feature matrix of 4th assessment M4 = read.csv(file='M4.csv', header=T, sep=",",                    fill=T,stringsAsFactors = F) X = as.matrix(M4) y= as.matrix(student) N= dim(y)[1]∗dim(y)[2] theta.init = matrix(rnorm(n=dim(X)[2]∗dim(y)[1],                     mean=0,sd = 1), nrow=dim(y)[1],ncol=dim(X)[2], byrow=T) e = y - theta.init%∗%t(X) grad.init = -(2/N)∗(e)%∗%X theta = theta.init - eta∗(1/N)∗grad.init l2loss = c() for(i in 1:iters){ myMatrix = y - theta%∗%t(X) # empty matrix for the results squaredMatrix = matrix(nrow=dim(myMatrix)[1],                                 ncol=dim(myMatrix)[2]) for(i in 1:nrow(myMatrix)) { for(j in 1:ncol(myMatrix)) { squaredMatrix[i,j] = myMatrix[i,j]ˆ2 } } l2loss = c(l2loss,sqrt(sum(squaredMatrix))) e = y - theta%∗%t(X) grad = -(2/N)∗e%∗%X theta = theta - eta∗(2/N)∗grad # empty matrix for the results squaredMatrix2 = matrix(nrow=dim(grad)[1],                                     ncol=dim(grad)[2]) for(i in 1:nrow(grad)) { for(j in 1:ncol(grad)) { squaredMatrix2[i,j] = grad[i,j]ˆ2 } } if(sqrt(sum(squaredMatrix2)) <= epsilon){ break } } values<-list("coef" = theta, "l2loss" = l2loss) h=sigmoid(X%∗%t(theta.init)) sum(diag(-y%∗%log(h)-(1-y)%∗%log(1-h)))/m #sigmoid function, inverse of logit sigmoid <- function(z){1/(1+exp(-z))} #initialize theta theta <- matrix(rnorm(n=dim(X)[2]∗dim(y)[1],                                       mean=0,sd = 1), nrow=dim(y)[1],ncol=dim(X)[2], byrow=T) #comput GD compCost<-function(para){ m <- dim(y)[1]∗dim(y)[2] j=0 for (i in seq(1,492∗4,by=4)) { k=match(i,seq(1,492∗4,by=4)) l1_1=sigmoid(colSums(para[i:(i+3)]∗t(X))) l1 <- log(l1_1) l2 <- log(1-l1_1) j=j+sum(y[k,]∗l1+(1-y[k,])∗l2) } J=-j/m }

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiong, J., Wheeler, J.M., Choi, HJ., Cohen, A.S. (2022). A Bi-level Individualized Adaptive Learning Recommendation System Based on Topic Modeling. In: Wiberg, M., Molenaar, D., González, J., Kim, JS., Hwang, H. (eds) Quantitative Psychology. IMPS 2021. Springer Proceedings in Mathematics & Statistics, vol 393. Springer, Cham. https://doi.org/10.1007/978-3-031-04572-1_10

Download citation

Publish with us

Policies and ethics