Skip to main content

A Survey and Challenges: Embedded System on IoT

  • Chapter
  • First Online:
IoT Based Smart Applications

Abstract

An embedded system is made up of electronic hardware and software. It contains a sensor to sense the environment and actuators to respond. There are millions of such embedded devices are available in the environment, but interoperability between them is a significant issue. IoT is a technology to provide communication between such embedded devices over the Internet. Therefore, IoT came into existence, and it is an outcome of the fourth industrial revolution of disruptive communication technologies. It is integrated with sensors, embedded systems, computing, and communication technologies. Embedded system is the heart of IoT. IoT computes and communicates the data and store it in the cloud for future data analysis. IoT is mainly to provide seamless data storing and analyzing the environment. This paper addresses the design aspects of a system required for IoT to use in any general application. This paper presents system architectural comparison, interrupts, task execution, scheduling, switching tasks and latency, prioritization of tasks, real-time tasks, real-time operating system, multitasking, sensors, actuators, memory footprints, and communication standards. This paper summarizes the architecture and its processors recommended for IoT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D. H. Mills, “Viewpoint: Inadequate reader reaction,” in Transactions of the South African Institute of Electrical Engineers, vol. 69, no. 6, pp. 149–150, June 1978.

    Google Scholar 

  2. S. Huckle, R. Bhattacharya, M. White, and N. Beloff, “Internet of Things, blockchain and shared economy applications,” Procedia Comput. Sci., vol. 98, pp. 461–466, 2016. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1877050916322190

  3. Srivastava, A., Gupta, A., & Anand, R. (2021). Optimized smart system for transportation using RFID technology. Mathematics in Engineering, Science and Aerospace (MESA), 12(4), 953–965.

    Google Scholar 

  4. R. Anand, A. Sinha, A. Bhardwaj and A. Sreeraj, “Flawed Security of Social Network of Things”. In Handbook of Research on Network Forensics and Analysis Techniques (pp. 65–86). IGI Global, 2018.

    Chapter  Google Scholar 

  5. Gupta, A., Srivastava, A., & Anand, R. (2019). Cost-effective smart home automation using internet of things. Journal of Communication Engineering & Systems. 9(2), 1–6.

    Google Scholar 

  6. Sindhwani, N., Maurya, V. P., Patel, A., Yadav, R. K., Krishna, S., & Anand, R. (2022). Implementation of Intelligent Plantation System Using Virtual IoT. In Internet of Things and Its Applications (pp. 305–322). Springer, Cham.

    Chapter  Google Scholar 

  7. D. Vergnaud, “Comment on “Efficient and Secure Outsourcing Scheme for RSA Decryption in the Internet of Things”,” in IEEE Internet of Things Journal, vol. 7, no. 11, pp. 11327–11329, Nov. 2020, doi: https://doi.org/10.1109/JIOT.2020.3004346.

  8. W. Zhou, Y. Jia, A. Peng, Y. Zhang and P. Liu, “The Effect of IoT New Features on Security and Privacy: New Threats, Existing Solutions, and Challenges Yet to Be Solved,” in IEEE Internet of Things Journal, vol. 6, no. 2, pp. 1606–1616, April 2019, doi: https://doi.org/10.1109/JIOT.2018.2847733.

  9. M. A. A. da Cruz, J. J. P. C. Rodrigues, J. Al-Muhtadi, V. V. Korotaev and V. H. C. de Albuquerque, “A Reference Model for Internet of Things Middleware,” in IEEE Internet of Things Journal, vol. 5, no. 2, pp. 871–883, April 2018, doi: https://doi.org/10.1109/JIOT.2018.2796561.

  10. F. John Dian, R. Vahidnia and A. Rahmati, “Wearables and the Internet of Things (IoT), Applications, Opportunities, and Challenges: A Survey,” in IEEE Access, vol. 8, pp. 69200–69211, 2020, doi: https://doi.org/10.1109/ACCESS.2020.2986329.

  11. W. Shi, J. Cao, Q. Zhang, Y. Li and L. Xu, “Edge Computing: Vision and Challenges,” in IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–646, Oct. 2016, doi: https://doi.org/10.1109/JIOT.2016.2579198.

  12. K. L. Ang and J. K. P. Seng, “Application Specific Internet of Things (ASIoTs): Taxonomy, Applications, Use Case and Future Directions,” in IEEE Access, vol. 7, pp. 56577–56590, 2019, doi: https://doi.org/10.1109/ACCESS.2019.2907793.

  13. D. Sehrawat and N. S. Gill, “Smart Sensors: Analysis of Different Types of IoT Sensors,” 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), 2019, pp. 523–528, doi: https://doi.org/10.1109/ICOEI.2019.8862778.

    Chapter  Google Scholar 

  14. S. N. Swamy and S. R. Kota, “An Empirical Study on System Level Aspects of Internet of Things (IoT),” in IEEE Access, vol. 8, pp. 188082–188134, 2020, doi: https://doi.org/10.1109/ACCESS.2020.3029847.

  15. Goyal, Dr. K. & Garg, Amit & Rastogi, Ankur & Singhal, Saurabh. (2018). A Literature Survey on Internet of Things (IoT). International Journal of Advanced Manufacturing Technology. 9. 3663–3668.

    Google Scholar 

  16. M. El-hajj, A. Fadlallah, M. Chamoun, and A. Serhrouchni, “A Survey of Internet of Things (IoT) Authentication Schemes,” Sensors, vol. 19, no. 5, p. 1141, Mar. 2019.

    Article  Google Scholar 

  17. H. Hejazi, H. Rajab, T. Cinkler and L. Lengyel, “Survey of platforms for massive IoT,” 2018 IEEE International Conference on Future IoT Technologies (Future IoT), 2018, pp. 1–8, doi: https://doi.org/10.1109/FIOT.2018.8325598.

    Chapter  Google Scholar 

  18. K. Routh and T. Pal, “A survey on technological, business and societal aspects of Internet of Things by Q3, 2017,” 2018 3rd International Conference On Internet of Things: Smart Innovation and Usages (IoT-SIU), 2018, pp. 1–4, doi: https://doi.org/10.1109/IoT-SIU.2018.8519898.

    Chapter  Google Scholar 

  19. M. L. Liya and M. Aswathy, “LoRa technology for Internet of Things (IoT):A brief Survey,” 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 2020, pp. 8–13, doi: https://doi.org/10.1109/I-SMAC49090.2020.9243449.

    Chapter  Google Scholar 

  20. W. Rafique, L. Qi, I. Yaqoob, M. Imran, R. U. Rasool and W. Dou, “Complementing IoT Services Through Software Defined Networking and Edge Computing: A Comprehensive Survey,” in IEEE Communications Surveys & Tutorials, vol. 22, no. 3, pp. 1761–1804, third quarter 2020, doi: https://doi.org/10.1109/COMST.2020.2997475.

  21. V. Subbarao, K. Srinivas and R. S. Pavithr, “A SURVEY ON INTERNET OF THINGS BASED SMART, DIGITAL GREEN AND INTELLIGENT CAMPUS,” 2019 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU), 2019, pp. 1–6, doi: https://doi.org/10.1109/IoT-SIU.2019.8777476.

    Chapter  Google Scholar 

  22. B. Dhanalaxmi and G. A. Naidu, “A survey on design and analysis of robust IoT architecture,” 2017 International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), 2017, pp. 375–378, doi: https://doi.org/10.1109/ICIMIA.2017.7975639.

    Chapter  Google Scholar 

  23. S. Sinche et al., “A Survey of IoT Management Protocols and Frameworks,” in IEEE Communications Surveys & Tutorials, vol. 22, no. 2, pp. 1168–1190, Second quarter 2020, doi: https://doi.org/10.1109/COMST.2019.2943087.

  24. P. Datta and B. Sharma, “A survey on IoT architectures, protocols, security and smart city based applications,” 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 2017, pp. 1–5, doi: https://doi.org/10.1109/ICCCNT.2017.8203943.

    Chapter  Google Scholar 

  25. A. Clements, Principles of Computer Hardware, 4th ed. Oxford, U.K.: Oxford Univ. Press, 2006.

    Google Scholar 

  26. C. Zhong, Z. Zhu and R. Huang, “Study on the IOT Architecture and Gateway Technology,” 2015 14th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES), 2015, pp. 196–199, doi: https://doi.org/10.1109/DCABES.2015.56.

    Chapter  Google Scholar 

  27. Anthony Steed, Manuel Fradinho Oliveira, Chapter 6 – Sockets and middleware, Editor(s): Anthony Steed, Manuel Fradinho Oliveira, Networked Graphics, Morgan Kaufmann, 2010, Pages 195–216, ISBN 9780123744234, doi:https://doi.org/10.1016/B978-0-12-374423-4.00006-9. (https://www.sciencedirect.com/science/article/pii/B9780123744234000069)

  28. L. Kohli, M. Saurabh, I. Bhatia, U.S. Shekhawat, M. Vijh and N. Sindhwani, “Design and Development of Modular and Multifunctional UAV with Amphibious Landing Module”. In Data Driven Approach Towards Disruptive Technologies: Proceedings of MIDAS 2020 (pp. 405–421). Springer Singapore, 2021.

    Chapter  Google Scholar 

  29. L. Kohli, M. Saurabh, I. Bhatia, N. Sindhwani and M. Vijh, “Design and Development of Modular and Multifunctional UAV with Amphibious Landing, Processing and Surround Sense Module”. Unmanned Aerial Vehicles for Internet of Things (IoT) Concepts, Techniques, and Applications, 207–230, 2021.

    Chapter  Google Scholar 

  30. Hou, Jin-bing, Li, Tong & Chang, Cheng. (2017). Research for Vulnerability Detection of Embedded System Firmware. Procedia Computer Science. 107. 814–818. https://doi.org/10.1016/j.procs.2017.03.181.

  31. A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari and M. Ayyash, “Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications,” in IEEE Communications Surveys & Tutorials, vol. 17, no. 4, pp. 2347–2376, Fourth quarter 2015, doi: https://doi.org/10.1109/COMST.2015.2444095.

  32. Khan, R.; Khan, S.U.; Zaheer, R.; Khan, S. Future Internet: The Internet of Things Architecture, Possible Applications and Key Challenges. In Proceedings of the 2012 10th International Conference on Frontiers of Information Technology, Islamabad, India, 17–19 December 2012.

    Google Scholar 

  33. Weyrich, M.; Ebert, C. Reference Architectures for the Internet of Things. IEEE Softw. 2016, 33, 112–116. [CrossRef]

    Article  Google Scholar 

  34. Wu, M.; Lu, T.J.; Ling, F.Y.; Sun, J.; Du, H.Y. Research on the architecture of Internet of Things. In Proceedings of the 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), Chengdu, China, 20–22 August 2010.

    Google Scholar 

  35. Bauer, M.; Boussard, M.; Bui, N.; Loof, J.D.; Magerkurth, C.; Meissner, S.; Nettsträter, A.; Stefa, J.; Thoma, M.; Walewski, J.W. IoT Reference Architecture. In Enabling Things to Talk; Springer: Berlin/Heidelberg, Germany, 2013; pp. 163–211.

    Chapter  Google Scholar 

  36. Bellavista P., Berrocal J., Corradi A., Sajal K., Foschini L., Zanni A., « A survey on fog computing for the Internet of Things ». Journal: Pervasive and Mobile Computing, Volume 52, p. 71–99. (2018).

    Google Scholar 

  37. A.-E. Bouaouad, A. Cherradi, S. Assoul and N. Souissi, “The key layers of IoT architecture,” 2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech), 2020, pp. 1–4, doi: https://doi.org/10.1109/CloudTech49835.2020.9365919.

    Chapter  Google Scholar 

  38. R. I. Davis, S. Altmeyer, L. S. Indrusiak, C. Maiza, V. Nelis, and J. Reineke, “An extensible framework for multicore response time analysis,” Real Time Syst., vol. 54, no. 3, pp. 607–661, Jul. 2018.

    Article  Google Scholar 

  39. S. Juneja, A. Juneja and R. Anand, “Reliability Modeling for Embedded System Environment compared to available Software Reliability Growth Models”. In 2019 International Conference on Automation, Computational and Technology Management (ICACTM) (pp. 379–382). IEEE.

    Google Scholar 

  40. Buttazzo, G.C. Rate Monotonic vs. EDF: Judgment Day. Real-Time Systems 29, 5–26 (2005).

    Article  Google Scholar 

  41. Giorgio C. Buttazzo, Enrico Bini, and Darren Buttle. 2014. Rate-adaptive tasks: model, analysis, and design issues. In Proceedings of the conference on Design, Automation & Test in Europe DATE ’14. European Design and Automation Association, Leuven, BEL, Article 253, 1–6.

    Google Scholar 

  42. Junsung Kim, Karthik Lakshmanan, and Ragunathan (Raj) Rajkumar. 2012. Rhythmic Tasks: A New Task Model with Continually Varying Periods for Cyber-Physical Systems. In Proceedings of the 2012 IEEE/ACM Third International Conference on Cyber-Physical Systems (ICCPS ’12). IEEE Computer Society, USA, 55–64.

    Google Scholar 

  43. Y. Wang et al., “Research on Real-Time Embedded Software Scheduling Model Based on EDF,” in IEEE Access, vol. 8, pp. 20058–20066, 2020, doi: https://doi.org/10.1109/ACCESS.2020.2969229.

  44. M. L. Dertouzos and A. K. Mok, “Multiprocessor online scheduling of hard-real-time tasks,” in IEEE Transactions on Software Engineering, vol. 15, no. 12, pp. 1497–1506, Dec. 1989, doi: https://doi.org/10.1109/32.58762.

  45. Han S., Park M. (2006) Predictability of Least Laxity First Scheduling Algorithm on Multiprocessor Real-Time Systems. In: Zhou X. et al. (eds) Emerging Directions in Embedded and Ubiquitous Computing. EUC 2006. Lecture Notes in Computer Science, vol 4097. Springer, Berlin, Heidelberg. doi:https://doi.org/10.1007/11807964_76

    Chapter  Google Scholar 

  46. T. Chen, H. Wei, J. Leu and W. Shih, “EDZL scheduling for large-scale cyber service on real-time cloud,” 2011 IEEE International Conference on Service-Oriented Computing and Applications (SOCA), 2011, pp. 1–3, doi: https://doi.org/10.1109/SOCA.2011.6166234.

    Chapter  Google Scholar 

  47. Uehara M. (2018) Mist Computing: Linking Cloudlet to Fogs. In: Lee R. (eds) Computational Science/Intelligence and Applied Informatics. CSII 2017. Studies in Computational Intelligence, vol 726. Springer, Cham. doi:https://doi.org/10.1007/978-3-319-63618-4_15

    Chapter  Google Scholar 

  48. M. De Donno, K. Tange and N. Dragoni, “Foundations and Evolution of Modern Computing Paradigms: Cloud, IoT, Edge, and Fog,” in IEEE Access, vol. 7, pp. 150936–150948, 2019, doi: https://doi.org/10.1109/ACCESS.2019.2947652.

  49. T. Paul and G. S. Kumar, “Safe Contiki OS: Type and Memory Safety for Contiki OS,” 2009 International Conference on Advances in Recent Technologies in Communication and Computing, 2009, pp. 169–171, doi: https://doi.org/10.1109/ARTCom.2009.126.

    Chapter  Google Scholar 

  50. J. Dixon. “Choosing the right low power processor for your embedded design.” https://www.embedded.com/choosing-the-right-low-powerprocessor-for-your-embedded-design/ (accessed 7/2/2020).

  51. Anzhen Xing, Donghui Wang, and Yulin Zhao. 2017. Analysis and Implementation of an Embedded System Platform Based on FreeRTOS and Cortex-M3. In Proceedings of the 2017 2nd International Conference on Communication and Information Systems (ICCIS 2017). Association for Computing Machinery, New York, NY, USA, 350–354.

    Google Scholar 

  52. E. Baccelli et al., “RIOT: An Open Source Operating System for Low-End Embedded Devices in the IoT,” in IEEE Internet of Things Journal, vol. 5, no. 6, pp. 4428–4440, Dec. 2018, doi: https://doi.org/10.1109/JIOT.2018.2815038.

    Article  Google Scholar 

  53. P. Alagupandi, R. Ramesh and S. Gayathri, “Smart irrigation system for outdoor environment using Tiny OS,” 2014 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC), 2014, pp. 104–108, doi: https://doi.org/10.1109/ICCPEIC.2014.6915348.

    Chapter  Google Scholar 

  54. M.K. Saini, R. Nagal, S. Tripathi, N. Sindhwani and A. Rudra, “PC Interfaced Wireless Robotic Moving Arm”. In AICTE Sponsored National Seminar on Emerging Trends in Software Engineering (Vol. 50), 2008.

    Google Scholar 

  55. L. Singh, M.K. Saini, S. Tripathi and N. Sindhwani, “An Intelligent Control System For Real-Time Traffic Signal Using Genetic Algorithm”. In AICTE Sponsored National Seminar on Emerging Trends in Software Engineering (Vol. 50), 2008.

    Google Scholar 

  56. Anand, R., Sindhwani, N., & Juneja, S. (2022). Cognitive Internet of Things, Its Applications, and Its Challenges: A Survey. In Harnessing the Internet of Things (IoT) for a Hyper-Connected Smart World (pp. 91–113). Apple Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Venkateshwari, P., Subramaniam, S. (2023). A Survey and Challenges: Embedded System on IoT. In: Sindhwani, N., Anand, R., Niranjanamurthy, M., Chander Verma, D., Valentina, E.B. (eds) IoT Based Smart Applications. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-031-04524-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04524-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04523-3

  • Online ISBN: 978-3-031-04524-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics