Skip to main content

Applications and Computational Advances for Solving the QUBO Model

  • Chapter
  • First Online:
The Quadratic Unconstrained Binary Optimization Problem

Abstract

QUBO models have proven to be remarkable for their ability to function as an alternative modeling framework for a wide variety of combinatorial optimization problems. Many studies have underscored the usefulness of the QUBO model to serve as an effective approach for modeling and solving important combinatorial problems. The significance of this unifying nature of the QUBO model is enhanced by the fact that the model can be shown to be equivalent to the Ising model that plays a prominent role in physics and is a major focus of the quantum computing community. Consequently, the broad range of optimization problems approached as QUBO models from the traditional Operations Research community are joined by an important domain of problems with connection to the physics community. Across the board, the QUBO model is used today as an alternative modeling and solution approach for a growing number of important problems found in industry and government. We describe important new applications of this model and sketch fundamental ways to create effective QUBO formulations. We also report computational experience showing the power of recent algorithmic advances. (The introduction section draws on material from Glover et al., 4OR 17:335–371, 2019.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Alidaee, G. Kochenberger, A. Ahmadian, 0–1 Quadratic programming approach for optimum solutions of two scheduling problems. Int. J. Syst. Sci. 25, 401–408 (1994)

    Article  Google Scholar 

  2. B. Alidaee, F. Glover, G. Kochenberger, C. Rego, A new modeling and solution approach for the number partitioning problem. J. Appl. Math. Decis. Sci. 9, 135–145 (2005)

    Google Scholar 

  3. B. Alidaee, G. Kochenberger, K. Lewis, M. Lewis, H. Wang, A new approach for modeling and solving set packing problems. Eur. J. Oper. Res. 186, 504–512 (2008)

    Article  Google Scholar 

  4. AlphaQUBO (2020). https://ma-website.azurewebsites.net/

  5. M. Anthony, E. Boros, Y. Crama, A. Gruber, Quadratic reformulations of nonlinear binary optimization problems. Math. Program. 162, 115–144 (2017)

    Article  Google Scholar 

  6. M. Aramon, G. Rosenberg, E. Valiante, T. Miyazawa, H. Tamura, H.G. Katzgraber, Physics-inspired optimization for quadratic unconstrained problems using a digital annealer. Front. Phys. 7, 48 (2019)

    Article  Google Scholar 

  7. G. Bass, C. Tomlin, V. Kumar, P. Rihaczek, J. Dulny, Heterogeneous quantum computing for satellite constellation optimization: solving the weighted k-clique problem (2017). https://arxiv.org/abs/1709.05381

  8. C. Bauckhage, N. Piatkowski, R. Sifa, D. Hecker, S. Wrobel, A QUBO Formulation of the k-medoids problem, in LWDA 2019 Proceedings (2019)

    Google Scholar 

  9. J.J. Berwald, J.M. Gottlieb, E. Munch, Computing Wasserstein distance for persistence diagrams on a quantum compute (2018). arXiv:1809.06433

    Google Scholar 

  10. Z. Bian, F. Chudak, W. Macready, A. Roy, R. Sebastiani, S. Varotti, Solving SAT and MaxSAT with a quantum annealer: foundations and a preliminary report, in Frontiers of Combining Systems, FroCoS 2017. Lecture Notes in Computer Science, vol. 10483 (Springer, Cham, 2017)

    Google Scholar 

  11. M.L. Bonet, J. Levy, F. Manyà, Resolution for Max-SAT. Artif. Intell. 171, 606–618 (2007)

    Google Scholar 

  12. E. Boros, P.L. Hammer, The Max-Cut problem and quadratic 0-1 optimization; polyhedral aspects, relaxations and bounds. Ann. Oper. Res. 33, 151–180 (1991)

    Article  Google Scholar 

  13. E. Boros, P.L. Hammer, Pseudo-Boolean optimization. Discrete Appl. Math. 123, 155–225 (2002)

    Article  Google Scholar 

  14. M. Borowski, P. Gora, K. Karnas, M. Blajda, K. Krol, A. Matyjasek, D. Burczyk, M. Szewczyk, M. Kutwin, New hybrid quantum annealing algorithms for solving vehicle routing problem, in International Conference on Computer Science, ICCS2020 (2020), pp. 546–561

    Google Scholar 

  15. L. Bottarelli, A. Farinelli, A Qubo model for Gaussian process variance reduction (2019). Preprint, arXiv:1901.10982

    Google Scholar 

  16. C.C. Chang, A. Gambhir, T.S. Humble, S. Sota, Quantum annealing for systems of polynomial equations. Sci. Rep. 9, 10258 (2019)

    Article  Google Scholar 

  17. G. Chapuis, H. Djidjev, G. Hahn, G. Rizk, Finding maximum cliques on the D-wave quantum annealer. J. Signal Process. Syst. 91, 363–377 (2019)

    Article  Google Scholar 

  18. J. Clark, T. West, J. Zammit, X. Guo, L. Mason, D. Russell, Towards real time multi-robot routing using quantum computing technologies, in HPC Asia 2019, Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region (2019), pp. 111–119

    Google Scholar 

  19. J. Cohen, A. Khan, C. Alexander, Portfolio optimization of 60 stocks using classical and quantum algorithms (2020). Preprint, arXiv:2008.08669

    Google Scholar 

  20. Y. Ding, X. Chen, L. Lamata, E. Solano, M. Sanz, Implementation of a hybrid classical-quantum annealing algorithm for logistic network design. SN Comput. Sci. 2, 68 (2021)

    Article  Google Scholar 

  21. Y. Du, G. Kochenberger, F. Glover, H. Wang, R. Hennig, Optimal solutions to the set partitioning problem: a comparison of alternative models. Working paper, University of Colorado Denver, 2020

    Google Scholar 

  22. I. Dunning, S. Gupta, J. Silberholz, What works best when? A systematic evaluation of heuristics for max-cut and qubo. INFORMS J. Comput. 30, 608–624 (2018)

    Google Scholar 

  23. D.J. Egger, R.G. Gutierrez, J.C. Mestre, S. Woerner, Credit risk analysis using quantum computers. IEEE Trans. Comput. 70, 2136–2145 (2021)

    Article  Google Scholar 

  24. N. Elsokkary, F.S. Khan, T.S. Humble, D.L. Torre, J. Gottlieb, Financial portfolio management using D-Wave’s quantum optimizer: the case of Abu Dhabi securities exchange, in IEEE High-performance Extreme Computing Conference (HPEC) (2017)

    Google Scholar 

  25. S. Feld, C. Roch, T. Gabor, C. Seidel, F. Neukart, I. Galter, W. Mauerer, C. Linnhoff-Popien, A hybrid solution method for the capacitated vehicle routing problem using a quantum annealer. Front. ICT 6, 13 (2019)

    Article  Google Scholar 

  26. R.J. Forrester, H.J. Greenberg, Quadratic binary programming models in computational biology. Algorithmic Oper. Res. 3, 110–129 (2008)

    Google Scholar 

  27. R.J. Forrester, N. Hunt-Isaak, Computational comparison of exact solution methods for 0-1 quadratic programs: recommendations for practitioners. J. Appl. Math. 2020, Article ID 5974820, 21 pages (2020)

    Google Scholar 

  28. F. Glover, G. Kochenberger, New optimization models for data mining. Int. J. Inf. Technol. Decis. Mak. 5, 605–609 (2006)

    Article  Google Scholar 

  29. F. Glover, G. Kochenberger, B. Alidaee, M. Amini, Solving quadratic knapsack problems by reformulation and tabu search, in Combinatorial and Global Optimization, ed. by P.M. Pardalos, A. Megados, R. Burkard (World Scientific Publishing, Singapore, 2002), pp. 272–287

    Google Scholar 

  30. F. Glover, G. Kochenberger, Y. Du, Quantum bridge analytics I: a tutorial on formulating and using QUBO models. 4OR 17, 335–371 (2019)

    Google Scholar 

  31. F. Glover, G. Kochenberger, Y. Du, A tutorial on formulating and using QUBO models (2019). arXiv:1811.11538

    Google Scholar 

  32. F. Glover, G. Kochenberger, M. Ma, Y. Du, Quantum bridge analytics II: QUBO-Plus, network optimization and combinatorial chaining for asset exchange. 4OR 18, 387–417 (2020)

    Google Scholar 

  33. P.L. Hammer, S. Rudeanu, Boolean Methods in Operations Research and Related Areas (Springer, Berlin, 1968)

    Book  Google Scholar 

  34. P. Hansen, B. Jaumard, V. Mathon, State-of-the-art survey—constrained nonlinear 0–1 programming. ORSA J. Comput. 5, 97–119 (1993)

    Article  Google Scholar 

  35. D. Inoue, A. Okada, T. Matsumori, K. Aihara, H. Yoshida, Traffic signal optimization on a square lattice with quantum annealing. Sci. Rep. 11, 3303 (2021)

    Article  Google Scholar 

  36. E.B. Jones, E. Kapit, C. Chang, D. Biagioni, D. Vaidhynathan, P. Graf, W. Jones, On the computational viability of quantum optimization for PMU placement. IEEE Power & Energy Society General Meeting (PESGM), 2020

    Google Scholar 

  37. A. Kalra, F. Qureshi, M. Tisi, Portfolio asset identification using graph algorithms on a quantum annealer (2018). http://www.henryyuen.net/fall2018/projects/qfinance.pdf

  38. G. Kochenberger, M. Ma, Quantum computing applications of QUBO models to portfolio optimization. White paper, University of Colorado, Denver, Sept 2019

    Google Scholar 

  39. G. Kochenberger, F. Glover, B. Alidaee, C. Rego, A unified modeling and solution framework for combinatorial optimization problems. OR Spectr. 26, 237–250 (2004)

    Article  Google Scholar 

  40. G. Kochenberger, F. Glover, B. Alidaee, K. Lewis, Using the unconstrained quadratic program to model and solve Max 2-Sat problems. Int. J. OR 1, 89–100 (2005)

    Google Scholar 

  41. G. Kochenberger, F. Glover, B. Alidaee, C. Rego, An unconstrained quadratic binary programming approach to the vertex coloring problem. Ann. Oper. Res. 139, 229–241 (2005)

    Article  Google Scholar 

  42. G. Kochenberger, F. Glover, B. Alidaee, H. Wang, Clustering of microarray data via clique partitioning. J. Comb. Optim. 10, 77–92 (2005)

    Article  Google Scholar 

  43. G. Kochenberger, B. Alidaee, F. Glover, H. Wang, An effective modeling and solution approach for the generalized independent set problem. Optim. Lett. 1, 111–117 (2007)

    Article  Google Scholar 

  44. G. Kochenberger, J.-K. Hao, S. Lu, H. Wang, F. Glover, Solving large scale max cut problems via Tabu search. J. Heuristics 19, 565–571 (2013)

    Article  Google Scholar 

  45. G. Kochenberger, J.-K. Hao, F. Glover, M. Lewis, Z. Lu, H. Wang, Y. Wang, The unconstrained binary quadratic programming problem: a survey. J. Comb. Optim. 28, 58–81 (2014)

    Article  Google Scholar 

  46. G. Kochenberger, Y. Du, F. Glover, H. Wang, M. Lewis, T. Tsuyuguchi, Solving clique partitioning problems: a comparison of models and commercial solvers. Working paper (2020)

    Google Scholar 

  47. V. Kumar, G. Bass, C. Tomlin, Quantum annealing for combinatorial clustering. Quantum Inf. Process. 17, Article 39 (2018)

    Article  Google Scholar 

  48. D.J. Laughhunn, Quadratic binary programming with applications to capital budgeting problems. Oper. Res. 18, 454–461 (1970)

    Article  Google Scholar 

  49. M. Lewis, B. Alidaee, G. Kochenberger, Using xQx to model and solve the uncapacitated task allocation problem. Oper. Res. Lett. 33, 176–182 (2005)

    Article  Google Scholar 

  50. M. Lewis, G. Kochenberger, B. Alidaee, A new modeling and solution approach for the set partitioning problem. Comput. Oper. Res. 35, 807–813 (2008)

    Article  Google Scholar 

  51. M. Lewis, B. Alidaee, F. Glover, G. Kochenberger, A note on xQx as a modeling and solution framework for the linear ordering problem. Int. J. OR 5, 152–162 (2009)

    Google Scholar 

  52. M. Lewis, A. Verma, T. Eckdahl, Qfold: a new modeling paradigm for the RNA folding problem. Working paper, 2020

    Google Scholar 

  53. R.Y. Li, R. Di Felice, R. Rohs, D.A. Lidar, Quantum annealing versus classical machine learning applied to a simplified computational biology problem. NPJ Quantum Inf. 4, Article 14 (2018)

    Article  Google Scholar 

  54. A. Lucas, Ising formulations of many NP problems. Front. Phys. 2, 5 (2014)

    Article  Google Scholar 

  55. A. Mehta, Quantum annealing based optimization of robotic movement in manufacturing. White paper, 2019

    Google Scholar 

  56. A. Milne, Optimal feature selection for credit scoring and classification. White paper, 1Qbit, 2017

    Google Scholar 

  57. S. Mniszewski, C.F.A. Negre, H. Ushijima-Mwesigwa, Graph partitioning using the D-Wave for electronic structure problems. Los Alamos National Lab (LANL), Los Alamos, NM (United States), LA-UR-16-27873 (2016), pp. 1–21

    Google Scholar 

  58. S.M. Mniszewski, C.F.A. Negre, H. Ushijima-Mwesigwa, Graph clustering approaches using nearterm quantum computing. Argonne Quantum Computing Workshop (2018)

    Google Scholar 

  59. C.F.A. Negre, H. Ushijima-Mwesigwa, S.M. Mniszewsk, Detecting multiple communities using quantum annealing on the D-Wave system. PLoS ONE 15, 1–14 (2020)

    Article  Google Scholar 

  60. F. Neukart, G. Compostella, C. Seidel, D. Dollen, S. Yarkoni, B. Parney, Traffic flow optimization using a quantum annealer. Front. ICT 4, 29 (2017)

    Article  Google Scholar 

  61. M. Ohzeki, A. Miki, M.J. Miyama, M. Terabe, Control of automated guided vehicles without collision by quantum annealer and digital devices. Front. Comput. Sci. 1, 9 (2019)

    Article  Google Scholar 

  62. D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a D-Wave quantum annealer. PLoS ONE 13, 12 (2018)

    Google Scholar 

  63. S. Pakin, Navigating a maze using a quantum annealer, in Proceedings of the Second International Workshop on Post Moores Era Supercomputing (2017), pp. 30–36

    Google Scholar 

  64. P.M. Pardalos, J. Xue, The maximum clique problem. J. Global Optim. 4, 301–328 (1994)

    Article  Google Scholar 

  65. E. Pelofske, G. Hahn, H. Djidjev, Solving large maximum clique problems on a quantum annealer. First International Workshop, QTOP 2019, Munich, Germany, 18 March 2019

    Google Scholar 

  66. S. Reinhardt, Detecting lateral movement with a compute-intense graph kernel (2018). http://www.clsac.org/uploads/5/0/6/3/50633811/reinhardt-clsac-2018.pdf

  67. M.L. Rogers, R.L. Singleton, Floating-point calculations on a quantum annealer: division and matrix inversion. Front. Phys. 8, 265 (2020)

    Article  Google Scholar 

  68. I. Rosenberg, Reduction of bivalent maximization to the quadratic case. Cahiers Centre d’Etudes Rech. Oper. 17, 71–74 (1975)

    Google Scholar 

  69. G. Rosenberg, Finding optimal arbitrage opportunities using a quantum annealer. White paper, 2016, 1Qbit

    Google Scholar 

  70. D. Sahner, A potential role for quantum annealing in the enhancement of patient outcomes? (2018). https://www.dwavesys.com/sites/default/files/Sahner.2018.pdf

  71. S. Santra, G. Quiroz, G.V. Steeg, D.A. Lidar, Max 2-SAT with up to 108 qubits. New J. Phys. 16(4), 045006 (2014)

    Google Scholar 

  72. E. Sargent, Y. Chang, H. Choubisa, Personal communication with authors of Chapter 2 (2020)

    Google Scholar 

  73. R. Shaydulin, H. Ushijima-Mwesigwa, I. Safro, S. Mniszewski, Y. Alexeev, Community detection across emerging quantum architectures (2018). Preprint, arXiv:1810.07765

    Google Scholar 

  74. J. Sleeman, J. Dorband, M. Halem, A hybrid quantum enabled RBM advantage: convolutional autoencoders for quantum image compressing and generative learning, in Proceedings Volume 11391, Quantum Information Science, Sensing, and Computation XII; 113910B (2020)

    Google Scholar 

  75. V.N. Smelyanskiy, E.G. Rieffel, S.I. Knysh, A near-term quantum computing approach for hard computational problems in space exploration (2012). arXiv:1204.2821 [quant-ph]

    Google Scholar 

  76. D. Snelling, G. Shahane, W.J. Shipman, A. Balaff, M. Pearce, S. Keinan, A quantum-inspired approach to de-novo drug design. Whitepaper, Fujitsu, 2020

    Google Scholar 

  77. D. Tomasiewicz, M. Pawlik, M. Malawski, K. Rycerz, Foundations for workflow application scheduling on D-wave system, in Computational Science – ICCS 2020: 20th International Conference, Amsterdam, The Netherlands, Proceedings, Part VI, 12142 3–5 June 2020, pp. 516–530

    Google Scholar 

  78. H. Ushijima-Mwesigwa, C.F.A. Negre, S.M. Mniszewsk, Graph partitioning using quantum annealing on the D-Wave system, in Proceedings of the Second International Workshop on Post Moores Era Supercomputing (2017), pp. 22–29

    Google Scholar 

  79. D. Venturelli, D.J.J. Marchand, G. Rojo, Quantum annealing implementation of job-shop scheduling (2016). arXiv:1506.08479 [quant-ph]

    Google Scholar 

  80. T. Vyskocil, H.N. Djidjev, Constraint embedding for solving optimization problems on quantum annealers, in 2019 IEEE International Parallel and Distributed Processing Symposium Workshops (2019), pp. 635–644

    Google Scholar 

  81. H. Wang, B. Alidaee, G. Kochenberger, Evaluating a clique partitioning problem model for clustering high-dimensional data mining, in AMCIS 2004 Proceedings, paper 234 (2004)

    Google Scholar 

  82. H. Wang, B. Alidaee, F. Glover, G. Kochenberger, Solving group technology problems via clique partitioning. Int. J. Flex. Manuf. Syst. 18, 77–87 (2006)

    Article  Google Scholar 

  83. Y. Wang, J.-K. Hao, F. Glover, Z. Lu, Solving the minimum sum coloring problem via binary quadratic programming (2013). arXiv:1304.5876 [cs.DS]

    Google Scholar 

  84. H. Wang, Y. Wang, M. Resende, G. Kochenberger, A QUBO approach to solving QAP problems. Unpublished manuscript, 2016

    Google Scholar 

  85. Z. Wang, S. Hadfield, Z. Jiang, E. G. Rieffel, The quantum approximation optimization algorithm for MaxCut: a fermionic view. Phys. Rev. A 97, 022304 (2018)

    Article  Google Scholar 

  86. H. Wang, Y. Du, R. Hennig, G. Kochenberger, F. Glover, Solutions to the traveling salesman problem: a comparison of quantum and heuristic solvers. Working Paper, Texas A & M International University, 2020

    Google Scholar 

  87. D. Willsch, M. Willsch, H.D. Raedt, K. Michielsen, Support vector machines on the D-Wave quantum annealer. Comput. Phys. Commun. 248, 107006 (2020)

    Article  Google Scholar 

  88. S. Yarkoni, A. Plaat, T. Back, First results solving arbitrarily structured maximum independent set problems using quantum annealing, in 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro (2018), pp. 1–6

    Google Scholar 

  89. S. Yarkoni, M. Leib, A. Skolik, M. Streif, F. Neukart, D. von Dollen, Volkswagen and quantum computing: an industrial perspective. Digitale Welt 3, 34–37 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Glover, F., Kochenberger, G., Du, Y. (2022). Applications and Computational Advances for Solving the QUBO Model. In: Punnen, A.P. (eds) The Quadratic Unconstrained Binary Optimization Problem. Springer, Cham. https://doi.org/10.1007/978-3-031-04520-2_2

Download citation

Publish with us

Policies and ethics