Skip to main content

Phase Transitions in Active Matter Systems

  • Chapter
  • First Online:
Nonequilibrium Thermodynamics and Fluctuation Kinetics

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 208))

Abstract

This article reviews various aspects of phase transitions in active matter systems. Scaling phenomena in steady states as well as far-from-steady-states have been considered. The focus has been on systems where particles align their velocities along their neighbors. Such dynamic interactions are known to facilitate clustering. Wherever necessary, results and discussions are provided from relevant passive matter systems. Comparison between the two should help understand the influence of activity at a quantitative level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.C. Marchetti, F.J. Joanny, S. Ramaswamy et al., Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143–1189 (2013)

    Article  ADS  Google Scholar 

  2. S. Ramaswamy, The mechanics and statistics of active matter. Ann. Rev. Cond. Mat. Phys. 1, 323–345 (2010)

    Article  ADS  Google Scholar 

  3. M.E. Cates, J. Tailleur, Motility-induced phase separation. Ann. Rev. Cond. Mat. Phys. 6, 219–244 (2015)

    Article  ADS  Google Scholar 

  4. S. Wang, P.G. Wolynes, Effective temperature and glassy dynamics of active matter. J. Chem. Phys. 135, 051101 (2011)

    Google Scholar 

  5. S.K. Das, S.A. Egorov, B. Trefz et al., Phase behavior of active swimmers in depletants: molecular dynamics and integrated equation theory. Phys. Rev. Lett. 112, 198301 (2014)

    Google Scholar 

  6. B. Trefz, S.K. Das, S.A. Egorov et al., Activity mediated phase separation: can we understand phase behaviour of all the nonequilibrium problem from an equilibrium approach? J. Chem. Phys. 144, 144902 (2016)

    Google Scholar 

  7. S.K. Das, Pattern, growth and aging in aggregation kinetics of a Vicsek-like active matter model. J. Chem. Phys. 146, 044902 (2017)

    Google Scholar 

  8. D. Loi, S. Mossa, L.F. Cugliandolo, Effective temperature of active complex matter. Soft Matter 7, 3726–3729 (2011)

    Article  ADS  Google Scholar 

  9. T. Vicsek, A. Czirók, E. Ben-Jacob et al., Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  10. G. Baglietto, E.V. Albano, J. Candia, Criticality and the onset of ordering in the standard Vicsek model. Interface Focus 2, 708–714 (2012)

    Article  Google Scholar 

  11. A. Czirók, T. Vicsek, Collective behaviour of interacting self-propelled particles. Phys. A 281, 17–29 (2000)

    Article  Google Scholar 

  12. H. Chaté, F. Ginelli, G. Grégoire et al., Modeling collective motion: variations on the Vicsek model. Eur. Phys. J. B 64, 451–456 (2008)

    Article  ADS  Google Scholar 

  13. J. Schwarz-Linek, C. Valeriani, A. Cacciuto et al., Phase separation and rotor self-assembly in active particle suspensions. Proc. Natl. Acad. Sci. USA 109, 4052–4057 (2012)

    Article  ADS  Google Scholar 

  14. J. Palacci, S. Sacanna, A.P. Steinberg et al., Living crystals of light-activated colloidal surfers. Science 339, 936–940 (2013)

    Article  ADS  Google Scholar 

  15. S. Chakraborty, S.K. Das, Relaxation in a phase-separating two-dimensional active matter system with alignment interaction. J. Chem. Phys. 153, 044905 (2020)

    Google Scholar 

  16. S. Paul, A. Bera, S.K. Das, How do clusters in a phase-separating active matter systems grow? a study for Vicsek activity in systems undergoing vapor-solid transition. Soft Matter 17, 645–654 (2021)

    Article  ADS  Google Scholar 

  17. J.T. Siebert, F. Dittrich, F. Schmid et al., Critical behavior of active Brownian particles. Phys. Rev. E 98, 030601 (2018)

    Google Scholar 

  18. N. Kumar, H. Soni, S. Ramaswamy et al., Flocking at a distance in active granular matter. Nat. Comm. 5, 4688 (2014)

    Article  ADS  Google Scholar 

  19. Y. Fily, M.C. Marchetti, Athermal phase separation of self-propelled particles with no alignment. Phys. Rev. Lett. 108, 235702 (2012)

    Google Scholar 

  20. A. Wysocki, R.G. Winkler, G. Gompper, Cooperative motion of active Brownian spheres in a in a three-dimensional dense suspensions. EPL 105, 480004 (2014)

    Google Scholar 

  21. J. Bialké, T. Speck, H. Löwen, Active colloidal suspensions: clustering and phase behavior. J. Non-Cryst. Solids 407, 367–375 (2015)

    Article  ADS  Google Scholar 

  22. J.T. Siebert, J. Letz, T. Speck et al., Phase behavior of active Brownian disks, sphere and dimers. Soft Matter 13, 1020–1026 (2017)

    Article  ADS  Google Scholar 

  23. P. Digregorio, D. Levis, A. Suma et al., Full phase diagram of active Brownian disks: from melting to motility-induced phase separation. Phys. Rev. Lett. 121, 098003 (2018)

    Google Scholar 

  24. R. Wittkouski, A. Tiribocchi, J. Stenhammer et al., Scalar \(\phi ^4\) field theory for active-particle phase separation. Nat. Comm. 5, 4351 (2014)

    Article  ADS  Google Scholar 

  25. N.V. Brilliantov, H. Abutuqayqah, I.Y. Tyukin et al., Swirlonic state of active matter. Sci. Rep. 10, 16783 (2020)

    Article  ADS  Google Scholar 

  26. K. Binder, P. Virnau, Phase transitions and phase coexistence: equilibrium systems versus externally driven or active systems - Some perspectives. Soft. Mater. 19, 267–285 (2021)

    Article  Google Scholar 

  27. Photo source: Wikipedia, the free encyclopedia, Red-Billed Queleas, the Most Numerous Species of Bird, Form Enormous Flocks—Sometimes Tens of Thousands Strong. Reproduced following Creative Commons Attribution-Share Alike 2.0 Generic license. Get link via: https://en.wikipedia.org/wikiBird#media (2006)

  28. B. de Giusti, An underwater picture taken in Moofushi Kandu, Maldives, showing predator bluefin trevally sizing up schooling anchovies, in Wikipedia, the Free Encyclopedia. Reproduced following Creative Commons Attribution-Share Alike 2.5 Italy license. See link: https://en.wikipedia.org/wiki/File:Moofushi_Kandu_fish.jpg (2006)

  29. R. Zwart (2005) Sheep on the Meseta, Spain, in Wikipedia, the Free Encyclopedia. Reproduced following Creative Commons Attribution-Share Alike 2.5 Netherlands license. See link: https://commons.wikimedia.org/wiki/File:Meseta_herd.jpg

  30. C. Dombrowski, L. Cisneros, S. Chatkaew et al., Self-concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93, 098103 (2004)

    Google Scholar 

  31. I. Goldhirsch, G. Zanetti, Clustering instability in dissipative gases. Phys. Rev. Lett. 70, 1619–1622 (1993)

    Article  ADS  Google Scholar 

  32. I.S. Aranson, L.S. Tsimring, Patterns and collective behavior in granular media: theoretical concepts. Rev. Mod. Phys. 78, 641–692 (2006)

    Google Scholar 

  33. N.V. Brilliantov, T. Poeschel, Kinetic Theory of Granular Gases (Oxford University Press, UK, 2004)

    Book  MATH  Google Scholar 

  34. S. Paul, S.K. Das, Dimension dependence of clustering dynamics in models of ballistic aggregation and freely cooling granular gas. Phys. Rev. E 97, 032902 (2018)

    Google Scholar 

  35. M.E. Fisher, The theory of equilibrium critical phenomena. Rep. Prog. Phys. 30, 615–730 (1967)

    Article  ADS  Google Scholar 

  36. K.G. Wilson, The renormalization group and critical phenomena. Rev. Mod. Phys. 55, 583–600 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  37. M.E. Fisher, Renormalization group theory: its basics and formulations in Statistical Physics. Rev. Mod. Phys. 70, 653–681 (1998)

    Article  ADS  MATH  Google Scholar 

  38. P.C. Hohenberg, B.I. Halperin, Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435–479 (1977)

    Article  ADS  Google Scholar 

  39. J.V. Sengers, P.H. Keyes, Scaling of the thermal conductivity near the gas-liquid critical point. Phys. Rev. Lett. 26, 70–73 (1971)

    Article  ADS  Google Scholar 

  40. D.P. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, UK, 2009)

    Book  MATH  Google Scholar 

  41. S. Roy, S.K. Das, Transport Phenomena in fluids: finite size scaling for critical behavior. EPL 94, 36001 (2011)

    Article  ADS  Google Scholar 

  42. A. Onuki, Phase Transition Dynamics (Cambridge University Press, UK, 2002)

    Google Scholar 

  43. A. Cavagna, D. Conti, C. Creato et al., Dynamical scaling in natural swarms. Nat. Phys. 13, 914 (2017)

    Article  Google Scholar 

  44. A.J. Bray, Theory of phase ordering kinetics 51, 481–587 (2002)

    Google Scholar 

  45. S. Puri, V. Wadhawan (eds.), Kinetics of Phase Transitions (CRC Press, Boca Raton, 2009)

    Google Scholar 

  46. K. Binder, in Phase Transform. Mater., vol. 5, ed. by R.W. Cahn, P. Haasen, E.J. Kramer (VCH, Weinheim, 1991), p. 405

    Google Scholar 

  47. D.S. Fisher, D.A. Huse, Nonequilibrium dynamics of spin glasses. Phys. Rev. B 38, 373–385 (1988)

    Article  ADS  Google Scholar 

  48. C. Yeung, M. Rao, R.C. Desai, Bounds on the decay of the autocorrelation in phase ordering dynamics. Phys. Rev. E 53, 3073–3077 (1996)

    Article  ADS  Google Scholar 

  49. G.F. Mazenko, Response functions in phase ordering kinetics. Phys. Rev. E 69, 016114 (2004)

    Google Scholar 

  50. F. Corberi, E. Lippiello, A. Mukherjee et al., Crossover in growth law and violation of superuniversality in the random-field Ising model. Phys. Rev. E 85, 021141 (2012)

    Google Scholar 

  51. I.M. Lifshitz, V.V. Slyozov, The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19, 35–50 (1961)

    Article  ADS  Google Scholar 

  52. A. Furukawa, H. Tanaka, Key role of hydrodynamic interactions in colloidal gelation. Phys. Rev. Lett. 104, 245702 (2010)

    Google Scholar 

  53. J. Midya, S.K. Das, Kinetics of vapor-solid phase transitions: structure, growth, and mechanism. Phys. Rev. Lett. 118, 165701 (2017)

    Google Scholar 

  54. J. Midya, S. Majumder, S.K. Das, Dimensionality dependence of aging in kinetics of diffusive phase separation: behaviour of order-parameter autocorrelation. Phys. Rev. E 92, 022124 (2015)

    Google Scholar 

  55. A. Henkel, A. Picone, M. Pleimling, Two-time autocorrelation function in phase-ordering kinetics from local scale invariance. Europhys. Lett. 68, 191–197 (2004)

    Article  ADS  Google Scholar 

  56. E. Lorenz, W. Janke, Numerical tests of local scale invariance in ageing q-state Potts models. EPL 77, 10003 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  57. A.J. Bray, S. Puri, Asymptotic structure factor and power-law tails for phase ordering in systems with continuous symmetry. Phys. Rev. Lett. 67, 2670–2673 (1991)

    Article  ADS  Google Scholar 

  58. G. Gonnella, D. Marenduzzo, A. Suma et al., Motility-induced phase separation and coarsening in active matter. Comptes Rendus Physique 16, 316–331 (2015)

    Article  Google Scholar 

  59. N. Goldenfeld, Lectures on Phase Transitions and the Renormalization Group (CRC Press, Boca Raton, 2018)

    Book  Google Scholar 

  60. S. Asakura, F. Oosawa, On interaction between two bodies immersed in a solution of macromolecules. J. Chem. Phys. 22, 1255–1256 (1954)

    Article  ADS  Google Scholar 

  61. R.L.C. Vink, J. Horbach, K. Binder, Critical phenomena in colloid-polymer mixtures: interfacial tension, order parameter, susceptibility, and coexistence diameter. Phys. Rev. E 71, 011401 (2005)

    Google Scholar 

  62. D. Frenkel, B. Smit, Understanding Molecular Simulations: From Algorithms to Applications (Academic Press, San Diego California, 2002)

    MATH  Google Scholar 

  63. J. Zausch, P. Virnau, K. Binder et al., Statics and dynamics of colloid-polymer mixtures near their critical point of phase separation: a computer simulation study of a continuous Asakura-Oosawa model. J. Chem. Phys. 130, 064906 (2009)

    Google Scholar 

  64. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987)

    MATH  Google Scholar 

  65. J. Midya, S.K. Das, Kinetics of domain growth and aging in two-dimensional off-lattice system. Phys. Rev .E 102, 062119 (2020)

    Google Scholar 

  66. D.A. Huse, Corrections to late-stage behavior in Spinodal decomposition: Lifshitz-Slyozov scaling and Monte Carlo simulations. Phys. Rev. B 34, 7845–7850 (1986)

    Article  ADS  Google Scholar 

  67. K. Binder, D. Stauffer, Theory for the slowing domain of the relaxation and Spinodal decomposition of binary mixtures. Phys. Rev. Lett. 33, 1006–1009 (1974)

    Article  ADS  Google Scholar 

  68. E.D. Siggia, Late stages of Spinodal decomposition in binary mixtures. Phys. Rev. A 20, 595–605 (1979)

    Article  ADS  Google Scholar 

  69. G.F. Carnevale, Y. Pomeau, W.R. Young, Statistics of ballistic agglomeration. Phys. Rev. Lett. 64, 2913–2916 (1990)

    Article  ADS  Google Scholar 

  70. H.P. Hansen, I.R. McDonald, Theory of Simple Liquids (Academic Press, London, 1986)

    MATH  Google Scholar 

  71. F. Dittrich, T. Speck, P. Virnau, Critical behavior in active lattice models of motility-induced phase separation. Eur. Phys. J. E 44, 53 (2021)

    Article  Google Scholar 

  72. A. Bera, S. Sahu, S. Thakur et al., Active particles in explicit solvent: dynamics of clustering for alignment interaction. Phys. Rev. E, 105, 014606 (2022)

    Google Scholar 

  73. T.N. Shendruk, A. Doostmohammadi, K. Thijssen et al., Dancing disclinations in confined active nematics. Soft Matter 13, 3853–3862 (2017)

    Article  ADS  Google Scholar 

  74. G. Duclos, C. Blanch-Mercader, V. Yashunsky et al., Spontaneous shear flow in confined cellular nematics. Nat. Phys. 14, 728–732 (2018)

    Article  Google Scholar 

  75. H. Wioland, F.G. Woodhouse, J. Dunkel et al., Confinement stabilizes a bacterial suspension into a Spiral Vortex. Phys. Rev. Lett. 110, 268102 (2013)

    Google Scholar 

  76. T. Gao, M.D. Betterton, A.S. Jhang et al., Analytical structure, dynamics, and coarse graining of a kinetic model of an active fluid. Phys. Rev. Fluids 2, 093302 (2017)

    Google Scholar 

  77. J. Elgeti, G. Gompper, Wall accumulation of self-propelled spheres. Europhys. Lett. 101, 48003 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subir K. Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, S.K. (2022). Phase Transitions in Active Matter Systems. In: Brenig, L., Brilliantov, N., Tlidi, M. (eds) Nonequilibrium Thermodynamics and Fluctuation Kinetics. Fundamental Theories of Physics, vol 208. Springer, Cham. https://doi.org/10.1007/978-3-031-04458-8_8

Download citation

Publish with us

Policies and ethics