Skip to main content

Kinetics and Mechanisms of Aryldiazonium Ions in Aqueous Solutions

  • Chapter
  • First Online:
Aryl Diazonium Salts and Related Compounds

Part of the book series: Physical Chemistry in Action ((PCIA))

Abstract

In aqueous acid solution and in mixed alcohol-water solvents ([H3O+] > 10–2 M), in the dark and in the absence of reductants, the spontaneous decomposition of aryldiazonium, ArN2+, salts proceeds through borderline SN1 (DN + AN) -SN2 mechanisms. The rate constant values depend strongly on the nature of the substituents attached to the aromatic ring of ArN2+ and, for those with electron-withdrawing substituents, on solution composition. The product distribution is proportional to the composition of the solvation shell of the ipso carbon, which reflects the composition of the water/cosolvent mixture. However, upon decreasing moderately the acidity, reactions involving the formation of diazohydroxides, ArN2OH, diazoethers, ArN2OR, and diazoates, ArN2O, become competitive and may even be the main decomposition pathway. The stability of ArN2OH, ArN2OR, and ArN2O species (which may coexist with ArN2+ in solution) is intimately related to the Z-E (syn-anti, cis-trans) isomerization of the O-adducts, so that they may undergo further reactions when they are components of a Lewis acid-base equilibrium, or undergo homolytic scission to produce homolytic reduction products. In this book chapter, we aim to provide the reader with a practical and (hopefully) useful view of the complex chemistry of ArN2+ in aqueous and mixed alcohol-water solutions, mainly covering the kinetics and mechanisms of the reactions. In a last section, we introduce some analytical methods for the determination of diazonium salts and their degradation products.

Dedicated to Prof. Laurence S. Romsted (Rutgers, the State University of New Jersey, USA) for introducing us to the very complex—yet fascinating—chemistry of aryldiazonium ions, for his continuous support, encouragement, extremely fruitful discussions, and, most importantly, for his friendship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Griess JP (1864) Philos Trans R Soc. London. https://doi.org/10.1098/rstl.1864.0018

  2. Griess P (1858) Liebigs Ann Chem 106:123

    Google Scholar 

  3. Zollinger H (1994) Diazo chemistry I: aromatic and heteroaromatic compounds

    Google Scholar 

  4. Saunders KH, Allen RLM (1985) Aromatic Diazo compounds. Baltimore, MD, USA, E Arnold

    Google Scholar 

  5. Mo F, Qiu D, Zhang Y, Wang J (2018) Acc Chem Res 51:496–506. https://doi.org/10.1021/acs.accounts.7b00566

    Article  CAS  PubMed  Google Scholar 

  6. Roglans A, Pla-Quintana A, Moreno-Mañas M (2006) Chem Rev 106:4622–4643. https://doi.org/10.1021/cr0509861

    Article  CAS  PubMed  Google Scholar 

  7. Kostas ID (2018) Suzuki–Miyaura cross—coupling reaction and potential applications. MDPI AG

    Google Scholar 

  8. Sengupta S, Chandrasekaran S (2019) Org Biomol Chem 17:8308–8329. https://doi.org/10.1039/C9OB01471C

    Article  CAS  PubMed  Google Scholar 

  9. Mohamed AA, Salmi Z, Dahoumane SA, Mekki A, Carbonnier B, Chehimi MM (2015) Adv Coll Interface Sci 225:16–36. https://doi.org/10.1016/j.cis.2015.07.011

    Article  CAS  Google Scholar 

  10. Chehimi MM (2012) Aryl diazonium salts: new coupling agents in polymer and surface science. Wiley

    Google Scholar 

  11. Granozzi G, Alonso-Vante N (2019) Electrochemical surface science: basics and applications. Mdpi AG

    Google Scholar 

  12. Hetemi D, Noël V, Pinson J (2020) Biosensors 10. https://doi.org/10.3390/bios10010004

  13. Dar AA, Bravo-Diaz C, Nazir N, Romsted LS (2017) Curr Opin Colloid Interface Sci 32:84–93. https://doi.org/10.1016/j.cocis.2017.09.001

    Article  CAS  Google Scholar 

  14. Bravo-Díaz C, Romsted LS, Liu C, Losada-Barreiro S, Pastoriza-Gallego MJ, Gao X, Gu Q, Krishnan G, Sánchez-Paz V, Zhang Y, Ahmad-Dar A (2015) Langmuir 31:8961–8979. https://doi.org/10.1021/acs.langmuir.5b00112

    Article  CAS  PubMed  Google Scholar 

  15. Firth JD, Fairlamb IJS (2020) Org Lett 22:7057–7059. https://doi.org/10.1021/acs.orglett.0c02685

    Article  CAS  PubMed  Google Scholar 

  16. Trusova ME, Kutonova KV, Kurtukov VV, Filimonov VD, Postnikov PS (2016) Res-Efficient Technol 2:36–42. https://doi.org/10.1016/j.reffit.2016.01.001

    Article  Google Scholar 

  17. Zollinger H (1991) Color chemistry. VCH

    Google Scholar 

  18. Bravo Díaz C (2011) Diazohydroxides, diazoethers and related species. In: Rappoport Z, Liebman JF (eds) The chemistry of hydroxylamines, oximes and hydroxamic acids. Wiley, Chichester, UK

    Google Scholar 

  19. Cruz GN, Lima FS, Dias LG, el Seoud OA, Horinek D, Chaimovich H, Cuccovia IM (2015) J Org Chem 80:8637–8642. https://doi.org/10.1021/acs.joc.5b01289

    Article  CAS  PubMed  Google Scholar 

  20. Zollinger H (1995) Diazo chemistry II. In: Aliphatic, inorganic and organometallic compounds. Weinheim, Germany, VCH

    Google Scholar 

  21. Zollinger H (1983) Dediazoniations of arenediazonium ions and related compounds. In: Patai S, Rappoport Z (eds) The chemistry of triple bonded functional groups. Wiley

    Google Scholar 

  22. Moss RA (1974) Acc Chem Res 7:421–427. https://doi.org/10.1021/ar50084a005

  23. Pazo-Llorente R, Bravo-Díaz C, González-Romero E (2003) Eur J Org Chem 2003:3421. https://doi.org/10.1002/ejoc.200300183

    Article  CAS  Google Scholar 

  24. Costas-Costas U, Bravo-Díaz C, González-Romero E (2003) Langmuir 19:5197–5203. https://doi.org/10.1021/la026922s

    Article  CAS  Google Scholar 

  25. Losada-Barreiro S, Sánchez-Paz V, Pastoriza-Gallego MJ, Bravo-Diaz C (2008) Helv Chim Acta 91:21–34. https://doi.org/10.1002/hlca.200890009

    Article  Google Scholar 

  26. Hegarty AF (1978) Kinetics and mechanisms of reactions involving diazonium and diazo groups. In: Patai S (ed) The chemistry of diazonium and diazo compounds. Wiley, NY

    Google Scholar 

  27. Galli C (1988) Chem Rev 88:765. https://doi.org/10.1021/cr00087a004

  28. Cuccovia IM, da Silva MA, Ferraz HM, Pliego Jr JR, Riveros JM, Chaimovich H (2000) J Chem Soc Perkin Tans 2:1896. https://doi.org/10.1039/b003079l

  29. García Martínez A, de la Moya Cerero S, Osío Barcina J, Moreno Jiménez F, Lora Maroto B (2013) Eur J Org Chem 6098–6107. https://doi.org/10.1002/ejoc.201300834

  30. Ussing BR, Singleton DA (2005) J Am Chem Soc 127:2888. https://doi.org/10.1021/ja043918p

    Article  CAS  PubMed  Google Scholar 

  31. Bravo-Diaz C (2009) Mini-Rev Org Chem 6:105–113. https://doi.org/10.2174/157019309788167693

  32. Bentley TW, Ryu ZH (1994) J Chem Soc Perkin Trans 2:761. https://doi.org/10.1039/P29940002531

    Article  Google Scholar 

  33. Pazo-Llorente R, Maskill H, Bravo-Díaz C, González-Romero E (2006) Eur J Org Chem 2006:2201. https://doi.org/10.1002/ejoc.200500946

    Article  CAS  Google Scholar 

  34. Hartley GS (1938) J Chem Soc 633. https://doi.org/10.1039/JR9380000633

  35. Hantzsch A, Werner A (1890) Ber Dtsch Chem Ges 23:11. 443.webvpn.fjmu.edu.cn/https://doi.org/10.1007/978-3-642-99003-8_13

  36. Costas-Costas U, Gonzalez-Romero E, Bravo-Díaz C (2001) Helv Chim Acta 84:632–648. https://doi.org/10.1002/1522-2675(20010321)84:3%3c632::AID-HLCA632%3e3.0.CO;2-0

    Article  CAS  Google Scholar 

  37. Hanson P, Jones JR, Taylor AB, Walton PH, Timms AW (2002) J Chem Soc Perkin Trans 2:1135

    Google Scholar 

  38. Canning PSJ, Mccrudden K, Maskill H, Sexton B (1999) J Chem Soc, Perkin Trans 2(12):2735. https://doi.org/10.1039/A905567C

  39. González-Romero E, Malvido-Hermelo B, Bravo-Díaz C (2002) Langmuir 18:46. https://doi.org/10.1021/la010938l

    Article  CAS  Google Scholar 

  40. Pazo-Llorente R, Bravo-Díaz C, González-Romero E (2004) Eur J Org Chem 2004:3221. https://doi.org/10.1002/ejoc.200400170

    Article  CAS  Google Scholar 

  41. Fernandez-Alonso A, Bravo-Diaz C (2010) J Phys Org Chem 23:938. https://doi.org/10.1002/poc.1730

    Article  CAS  Google Scholar 

  42. Pazo-Llorente R, Bravo-Diaz C, Gonzalez-Romero E (2003) Langmuir 19:9142. https://doi.org/10.1021/la034879i

    Article  CAS  Google Scholar 

  43. Fernández-Alonso A, Bravo-Diaz C (2010) Helv Chim Acta 93:877. https://doi.org/10.1002/hlca.200900322

    Article  CAS  Google Scholar 

  44. Crossley ML, Kienle RH, Benbrook CH (1940) J Am Chem Soc 62:1400–1404. https://doi.org/10.1021/ja01863a019

    Article  CAS  Google Scholar 

  45. Fernández-Alonso A, Bravo-Diaz C (2008) Org Biomol Chem 6:4004–4011. https://doi.org/10.1039/B809521C

    Article  PubMed  Google Scholar 

  46. González-Romero E, Fernández-Calvar MB, Bravo-Díaz C (2002) Langmuir 18:10311. https://doi.org/10.1021/la026312s

    Article  CAS  Google Scholar 

  47. Bravo-Díaz C, González-Romero E (2003) Electroanalysis 15:303–311. 1040-0397/03/0402-0303

    Google Scholar 

  48. Bravo-Díaz C, González-Romero E (2003) Electrochemical behavior of arenediazonium ions. New trends and applications. In: Current Topics in Electrochemistry. Research Trends, Trivandrum, India

    Google Scholar 

  49. Pastoriza-Gallego MJ, Losada-Barreiro S, Bravo Díaz C (2012) J Phys Org Chem 25:908–915. https://doi.org/10.1002/poc.2949

  50. Fry AJ (1978) Electrochemistry of the diazo and diazonium groups. In: Patai S (ed) The chemistry of Diazo and Diazonium Groups. Wiley, NY

    Google Scholar 

  51. Viertler H, Pardini VL, Vargas RR (1994) The electrochemistry of triple bond. In: Patai S (ed) The chemistry of triple-bonded functional groups, supplement C. Wiley, NY

    Google Scholar 

  52. Zuman P (1969) Physical organic polarography. In: Zuman P, Perrin CL (eds) Organic polarography. Wiley, NY

    Google Scholar 

  53. Sienkiewicz A, Szymulaa M, Narkiewicz-Michaleka J, Bravo-Díaz C (2014) J Phys Org Chem 27:284–289. https://doi.org/10.1002/poc.3194

    Article  CAS  Google Scholar 

  54. Lowry TH, Richardson KS (1987) Mechanism and theory in organic chemistry. Harper-Collins Pub, New York

    Google Scholar 

  55. Fernández-Alonso A, Pastoriza-Gallego MJ, Bravo-Diaz C (2010) Org Biomol Chem 8:5304–5312. https://doi.org/10.1039/c0ob00143k

    Article  CAS  PubMed  Google Scholar 

  56. Doyle MP, Nesloney CL, Shanklin MS, Marsh CA, Brown KC (1989) J Org Chem 54:3785–3789. https://doi.org/10.1021/jo00277a009

    Article  CAS  Google Scholar 

  57. Costas Costas U, Bravo-Díaz C, González-Romero E (2005) Langmuir 21:10983–10991. https://doi.org/10.1021/la051564p

  58. Costas-Costas U, Bravo-Díaz C, González-Romero E (2004) Langmuir 20:1631–1638

    Google Scholar 

  59. Pastoriza-Gallego MJ, Fernández-Alonso A, Losada-Barreiro S, Sánchez-Paz V, Bravo-Diaz C (2008) J Phys Org Chem 21:524–530. https://doi.org/10.1002/poc.1289

    Article  CAS  Google Scholar 

  60. Losada-Barreiro S, Sánchez-Paz V, Bravo-Díaz C (2007) Helv Chim Acta 90:1559–1573. https://doi.org/10.1002/hlca.200790163

    Article  CAS  Google Scholar 

  61. Losada-Barreiro S, Bravo-Diaz C (2009) Helv Chim Acta 92:2009–2023. https://doi.org/10.1002/hlca.200900080

    Article  CAS  Google Scholar 

  62. Jaszczuk K, Dudzik A, Losada-Barreiro S, Szymula M, Narkiewicz-Michalek J, Bravo-Díaz C (2016) J Phys Org Chem 29:586–593

    Google Scholar 

  63. Dudzik A, Jaszczuk K, Losada-Barreiro S, Bravo-Díaz C (2017) New J Chem 41:2534–2542. https://doi.org/10.1039/C6NJ03670H

    Article  CAS  Google Scholar 

  64. Wittwer R, Zollinger H (1954) Helv Chim Acta 37:1954. https://doi.org/10.1002/hlca.19540370707

    Article  CAS  Google Scholar 

  65. Lewis ES, Surh H (1958) J Am Chem Soc 80:1367. https://doi.org/10.1021/ja01539a023

    Article  CAS  Google Scholar 

  66. Brown KC, Doyle MP (1988) J Org Chem 53:3255–3261. https://doi.org/10.1021/jo00249a021

  67. Zollinger H (2003) Color chemistry. In: Syntheses, properties, and applications of organic dyes and pigments, 3rd revised edn. Wiley-VCH Verlag, Zürich. https://doi.org/10.1002/anie.200385122 Is this book the vsame as ref 17

  68. García-Meijide MC, Bravo-Díaz C, Romsted LS (1998) Int J Chem Kin 30:31–39. https://doi.org/10.1002/(SICI)1097-4601(1998)30:1<31::AID-KIN4>3.0.CO;2-V

  69. Quintero B, Morales JJ, Quirós M, Martínez-Puentedura MI, Cabeza MC (2000) Free Radic Biol Med 29:464–479. https://doi.org/10.1016/s0891-5849(00)00321-x

  70. Laali KK, Gettwert VJ (2001) J Fluor Chem 107:31–34. https://doi.org/10.1016/S0022-1139(00)00337-7

    Article  CAS  Google Scholar 

  71. Chaudhuri A, Loughlin JA, Romsted LS, Yao J (1993) J Am Chem Soc 115:8351–8361. https://doi.org/10.1021/ja00071a050

    Article  CAS  Google Scholar 

  72. Bravo-Díaz C, González-Romero E (2003) J Chromatogr A 989:221–229. https://doi.org/10.1016/S0021-9673(03)00170-5

    Article  CAS  PubMed  Google Scholar 

  73. Yasui S, Nakamura K, Ohno A (1984) J Org Chem 49:878–882. https://doi.org/10.1021/jo00179a024

    Article  CAS  Google Scholar 

  74. Hanson P, Hammond RC, Goodacre PR, Purcell J, Timms AW (1994) J Chem Soc Perkin Trans 1(2):691–696. https://doi.org/10.1039/P2994000069

    Article  Google Scholar 

  75. Pazo-Llorente R, Bravo-Díaz C, González-Romero E (2001) Fresenius J Anal Chem 369:582–586. https://doi.org/10.1007/s002160000694

    Article  CAS  PubMed  Google Scholar 

  76. Gunaseelan K, Romsted LS, González-Romero E, Bravo-Díaz C (2004) Langmuir 20:3047–3055. https://doi.org/10.1021/la0354279

    Article  CAS  PubMed  Google Scholar 

  77. Hanson P, Hammond RC, Goodacre PR, Purcell J, Timms AW (1994) J Chem Soc, Perkin Trans 1. 2:691–696. https://doi.org/10.1039/P2994000069

  78. Gunaseelan K, Romsted LS, Pastoriza Gallego M-J, González-Romero E, Bravo-Díaz C (2006) Adv Colloid Interface Sci 123–126:303–311. https://doi.org/10.1016/j.cis.2006.05.007

  79. Gunaseelan K, Romsted LS, González-Romero E, Bravo-Díaz C (2004) Langmuir 20:3047–3055. https://doi.org/10.1021/la0354279

  80. Scaiano JC, Kim-Thuan N, Leigh WJ (1984) J Photochem 24:79–86. https://doi.org/10.1016/0047-2670(84)80009-X

Download references

Acknowledgments

This book chapter was prepared during a sabbatical leave of CBD supported by the University of Vigo. We thank all colleagues for helpful discussions and, especially, to all students who participated with enthusiasm for years in the aryldiazonium project, making important contributions to this work. Financial support from Ministerio de Ciencia e Innovación (Spain), Xunta de Galicia and Universidad de Vigo is also acknowledged.

Credit authorship contribution statement.

C. B-D. Sections 1–3 and 5: conceptualization, visualization, writing, review & editing.

E. G-R. Section 4: conceptualization, visualization, writing, review & editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Bravo-Díaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bravo-Díaz, C., González-Romero, E. (2022). Kinetics and Mechanisms of Aryldiazonium Ions in Aqueous Solutions. In: Chehimi, M.M., Pinson, J., Mousli, F. (eds) Aryl Diazonium Salts and Related Compounds. Physical Chemistry in Action. Springer, Cham. https://doi.org/10.1007/978-3-031-04398-7_3

Download citation

Publish with us

Policies and ethics