Skip to main content

Diazonium Salts for the Preparation of Carbon Composites with a Focus on Applications of Carbon Fibers

  • Chapter
  • First Online:
Aryl Diazonium Salts and Related Compounds

Part of the book series: Physical Chemistry in Action ((PCIA))

Abstract

This chapter will provide insight into the use of aryl diazonium salts to functionalize carbon fiber. Examining the production of carbon fiber and its current industry applications. The methods of analysis of functionalized carbon fiber; mechanical tests to evaluate the structural integrity and strength of the fiber will also be covered. Moreover, the chemical analysis that can be used to confirm successful surface grafting has occurred. The literature reports of aryl diazonium salt grafting to carbon fiber over the past decade are explored, examining approaches of functionalization and the increased diversity of applications these chemistries provide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guitchounts G, Cox D (2020) 64-channel carbon fiber electrode arrays for chronic electrophysiology. Sci Rep 10(1):3830

    Article  CAS  Google Scholar 

  2. Guitchounts G, Markowitz JE, Liberti WA, Gardner TJ (2013) A carbon-fiber electrode array for long-term neural recording. J Neural Eng 10(4):046016–046016

    Article  Google Scholar 

  3. Hosford PS, Wells JA, Christie IN, Lythgoe MF, Millar J, Gourine AV (2019) Electrochemical carbon fiber-based technique for simultaneous recordings of brain tissue PO2, pH, and extracellular field potentials. Biosens Bioelectron: X 3:100034

    CAS  Google Scholar 

  4. Morgan P (2005) Carbon Fibers and Their Composites. Boca Raton

    Google Scholar 

  5. Fitzer E, Müller DJ (1975) The influence of oxygen on the chemical reactions during stabilization of pan as carbon fiber precursor. Carbon 13(1):63–69

    Article  CAS  Google Scholar 

  6. Talreja R (2016) Physical modeling of failure in composites. Philosoph Trans Act Royal Soc A: Math Phys Eng Sci 374(2071):20150280

    Article  Google Scholar 

  7. Feih S, Minzari KWD, Westermann P, Lilholt H (2004) Testing procedure for the single fibre fragmentation test. Forskningscenter Risø

    Google Scholar 

  8. Stojcevski F, Hilditch TB, Henderson LC (2019) A comparison of interfacial testing methods and sensitivities to carbon fiber surface treatment conditions. Compos A Appl Sci Manuf 118:293–301

    Article  CAS  Google Scholar 

  9. Wang C, Ji X, Roy A, Silberschmidt VV, Chen Z (2015) Shear strength and fracture toughness of carbon fibre/epoxy interface: effect of surface treatment. Mater Des 85:800–807

    Article  CAS  Google Scholar 

  10. Delamar M, Désarmot G, Fagebaume O, Hitmi R, Pinsonc J, Savéant JM (1997) Modification of carbon fiber surfaces by electrochemical reduction of aryl diazonium salts: application to carbon epoxy composites. Carbon 35(6):801–807

    Article  CAS  Google Scholar 

  11. Servinis L, Henderson LC, Andrighetto LM, Huson MG, Gengenbach TR, Fox BL (2015) A novel approach to functionalise pristine unsized carbon fibre using in situ generated diazonium species to enhance interfacial shear strength. J Mater Chem A 3(7):3360–3371

    Article  CAS  Google Scholar 

  12. Beggs KM, Servinis L, Gengenbach TR, Huson MG, Fox BL, Henderson LC (2015) A systematic study of carbon fibre surface grafting via in situ diazonium generation for improved interfacial shear strength in epoxy matrix composites. Compos Sci Technol 118:31–38

    Article  CAS  Google Scholar 

  13. Li N, Wu Z, Huo L, Zong L, Guo Y, Wang J, Jian X (2016) One-step functionalization of carbon fiber using in situ generated aromatic diazonium salts to enhance adhesion with PPBES resins. RSC Adv 6(74):70704–70714

    Article  CAS  Google Scholar 

  14. Wang X, Huang Z, Lai M, Jiang L, Zhang Y, Zhou H (2020) Highly enhancing the interfacial strength of CF/PEEK composites by introducing PAIK onto diazonium functionalized carbon fibers. Appl Surf Sci 510:145400

    Article  Google Scholar 

  15. Servinis L, Beggs KM, Scheffler C, Wolfel E, Randall JD, Gengenbach TR, Demir B, Walsh TR, Doeven EH, Francis PS, Henderson LC (2017) Electrochemical surface modification of carbon fibres by grafting of amine, carboxylic and lipophilic amide groups. Carbon 118:393–403

    Article  CAS  Google Scholar 

  16. Beggs KM, Randall JD, Servinis L, Krajewski A, Denning R, Henderson LC (2018) Increasing the resistivity and IFSS of unsized carbon fibre by covalent surface modification. React Funct Polym 129:123–128

    Article  CAS  Google Scholar 

  17. Arnold CL, Eyckens DJ, Servinis L, Nave MD, Yin H, Marceau RKW, Pinson J, Demir B, Walsh TR, Henderson LC (2019) Simultaneously increasing the hydrophobicity and interfacial adhesion of carbon fibres: a simple pathway to install passive functionality into composites. J Mater Chem A 7(22):13483–13494

    Article  CAS  Google Scholar 

  18. Szabó L, Imanishi S, Kawashima N, Hoshino R, Takada K, Hirose D, Tsukegi T, Ninomiya K, Takahashi K (2018) Carbon fibre reinforced cellulose-based polymers: intensifying interfacial adhesion between the fibre and the matrix. RSC Adv 8(40):22729–22736

    Article  Google Scholar 

  19. Eyckens DJ, Stojcevski F, Hendlmeier A, Arnold CL, Randall JD, Perus MD, Servinis L, Gengenbach TR, Demir B, Walsh TR, Henderson LC (2018) An efficient high-throughput grafting procedure for enhancing carbon fiber-to-matrix interactions in composites. Chem Eng J 353:373–380

    Article  CAS  Google Scholar 

  20. Wang Y, Meng L, Fan L, Wu G, Ma L, Huang Y (2015) Preparation and properties of carbon nanotube/carbon fiber hybrid reinforcement by a two-step aryl diazonium reaction. RSC Adv 5(55):44492–44498

    Article  CAS  Google Scholar 

  21. Yang Y, Ibrahim AA, Stockdill JL, Hashemi P (2015) A density-controlled scaffolding strategy for covalent functionalization of carbon-fiber microelectrodes. Anal Methods 7(17):7352–7357

    Article  CAS  Google Scholar 

  22. Servinis L, Beggs KM, Gengenbach TR, Doeven EH, Francis PS, Fox BL, Pringle JM, Pozo-Gonzalo C, Walsh TR, Henderson LC (2017) Tailoring the fibre-to-matrix interface using click chemistry on carbon fibre surfaces. J Mater Chem A 5(22):11204–11213

    Article  CAS  Google Scholar 

  23. Eyckens DJ, Demir B, Randall JD, Gengenbach TR, Servinis L, Walsh TR, Henderson LC (2020) Using molecular entanglement as a strategy to enhance carbon fiber-epoxy composite interfaces. Compos Sci Technol 196:108225

    Article  CAS  Google Scholar 

  24. Randall JD, Eyckens DJ, Servinis L, Stojcevski F, O’Dell LA, Gengenbach TR, Demir B, Walsh TR, Henderson LC (2019) Designing carbon fiber composite interfaces using a ‘graft-to’ approach: surface grafting density versus interphase penetration. Carbon 146:88–96

    Article  CAS  Google Scholar 

  25. Randall JD, Eyckens DJ, Stojcevski F, Francis PS, Doeven EH, Barlow AJ, Barrow AS, Arnold CL, Moses JE, Henderson LC (2018) Modification of carbon fibre surfaces by sulfur-fluoride exchange click chemistry. ChemPhysChem 19(23):3176–3181

    Article  CAS  Google Scholar 

  26. Dong J, Krasnova L, Finn MG, Sharpless KB (2014) Sulfur(VI) fluoride exchange (SuFEx): another good reaction for click chemistry. Angew Chem Int Ed 53(36):9430–9448

    Article  CAS  Google Scholar 

  27. Barrow AS, Smedley CJ, Zheng Q, Li S, Dong J, Moses JE (2019) The growing applications of SuFEx click chemistry. Chem Soc Rev 48(17):4731–4758

    Article  CAS  Google Scholar 

  28. Liu Y-T, Wu G-P, Lu C-X (2014) Grafting of carbon nanotubes onto carbon fiber surfaces by step-wise reduction of in-situ generated diazonium salts for enhancing carbon/epoxy interfaces. Mater Lett 134:75–79

    Article  CAS  Google Scholar 

  29. Szabó L, Imanishi S, Kawashima N, Hoshino R, Hirose D, Tsukegi T, Ninomiya K, Takahashi K (2018) Interphase engineering of a cellulose-based carbon fiber reinforced composite by applying click chemistry. ChemistryOpen 7(9):720–729

    Article  Google Scholar 

  30. Deniau G, Azoulay L, Bougerolles L, Palacin S (2006) Surface electroinitiated emulsion polymerization: grafted organic coatings from aqueous solutions. Chem Mater 18(23):5421–5428

    Article  CAS  Google Scholar 

  31. Eyckens DJ, Arnold CL, Randall JD, Stojcevski F, Hendlmeier A, Stanfield MK, Pinson J, Gengenbach TR, Alexander R, Soulsby LC, Francis PS, Henderson LC (2019) Fiber with butterfly wings: creating colored carbon fibers with increased strength, adhesion, and reversible malleability. ACS Appl Mater Interfaces 11(44):41617–41625

    Article  CAS  Google Scholar 

  32. Stanfield MK, Eyckens DJ, Médard J, Decorse P, Pinson J, Henderson LC (2021) Using redox active molecules to build multilayered architecture on carbon fibers and the effect on adhesion in epoxy composites. Compos Sci Technol 202:108564

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luke C. Henderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stanfield, M.K., Henderson, L.C. (2022). Diazonium Salts for the Preparation of Carbon Composites with a Focus on Applications of Carbon Fibers. In: Chehimi, M.M., Pinson, J., Mousli, F. (eds) Aryl Diazonium Salts and Related Compounds. Physical Chemistry in Action. Springer, Cham. https://doi.org/10.1007/978-3-031-04398-7_21

Download citation

Publish with us

Policies and ethics