Skip to main content

Swarms: The Next Frontier for Cancer Nanomedicine

  • Chapter
  • First Online:
Cancer, Complexity, Computation

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 46))

Abstract

Nanomedicine refers to medical products developed using nanotechnology and has the potential to radically change how we diagnose and treat cancer. While the use of nanomedicines has increased in the clinic dramatically, problems persist over the lack of an agreed definition, creating difficulties for safety (including toxicity profiles), governance and transparency. This review assesses the utility of nanomedicines in healthcare, clarifying key concepts in the literature, examining past, present and future nanomedicines and analyzing gaps in current regulations. Advances in nanomedicine offer unique opportunities including programmable and controllable nanoparticles (nanobots) that work cooperatively (nanoswarms), rather than individually, to achieve a targeted, personalized, and intelligent cancer treatment. Swarm behavior can be designed using a systems approach as in silico modelling has now advanced to the point of being a useful tool for selecting nanoparticles that optimize treatment outcomes. We need to understand what the first-in-human clinical trial of nanoswarms should/will look like, and anticipate the associated ethical questions that may arise. To aid clinical adoption of nanoswarms in cancer treatment, a harmonized nanomedicine vocabulary is needed alongside a robust, specific and overarching regulatory framework that can guide researchers, regulators and other key stakeholders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization: Cancer. https://www.who.int/health-topics/cancer#tab=tab_1. Accessed 03 Dec 2021

  2. Cancer Research UK: What is cancer?. https://www.cancerresearchuk.org/about-cancer/what-is-cancer. Accessed 03 Dec 2021

  3. National Cancer Institute: What Is Cancer?. https://www.cancer.gov/about-cancer/understanding/what-is-cancer#definition. Accessed 03 Dec 2021

  4. Hock, S.C., Ying, Y.M., Wah, C.L.: A review of the current scientific and regulatory status of nanomedicines and the challenges ahead. PDA J. Pharm. Sci. Technol. 65, 177–195 (2011)

    Google Scholar 

  5. Lu, W., Yao, J., Zhu, X., Qi, Y.: Nanomedicines: redefining traditional medicine. Biomed. Pharmacother. 134 (2021). https://doi.org/10.1016/J.BIOPHA.2020.111103

  6. Stillman, N.R., Kovacevic, M., Balaz, I., Hauert, S.: In silico modelling of cancer nanomedicine, across scales and transport barriers. NPJ Comput. Mater. 6:1. 6, 1–10 (2020). https://doi.org/10.1038/s41524-020-00366-8

  7. Grand View Research Inc: Nanomedicine market size worth $350.8 Billion By 2025 CAGR: 11.2%. (2017)

    Google Scholar 

  8. Hartshorn, C.M., Grodzinski, P., Farrell, D., Morris, S.A., Fedorova-Abrams, N., Liu, C., Panaro, N., Christ, R.M., Prabhakar, U.: Cancer Nanotechnology Plan 2015. U.S. Department of Health and Human Services, National Institutes of Health (2015)

    Google Scholar 

  9. Hauert, S., Bhatia, S.N.: Mechanisms of cooperation in cancer nanomedicine: towards systems nanotechnology. Trends Biotechnol. 32, 448–455 (2014). https://doi.org/10.1016/J.TIBTECH.2014.06.010

    Article  Google Scholar 

  10. Pharmaceutical Market: https://stats.oecd.org/Index.aspx?DataSetCode=HEALTH_PHMC. Accessed 22 Nov 2021

  11. Mikulic, M.: Global pharmaceutical industry—statistics and facts. https://www.statista.com/topics/1764/global-pharmaceutical-industry/#dossierKeyfigures. Accessed 22 Nov 2021

  12. Association of the British Pharmaceutical Industry: Global pharmaceutical market. https://www.abpi.org.uk/facts-figures-and-industry-data/global-pharmaceutical-market/. Accessed 22 Nov 2021

  13. Vasile, C.: Polymeric nanomaterials: recent developments, properties and medical applications. In: Vasile, C. (ed.) Polymeric Nanomaterials in Nanotherapeutics, pp. 1–66. Elsevier (2019). https://doi.org/10.1016/B978-0-12-813932-5.00001-7

  14. Boisseau, P., Levy, L., Letourneur, D., Mauberna, P.: Strategic Research and Innovation Nanomedicine Agenda Industry Patient. European Technology Platform for Nanomedicine (2016)

    Google Scholar 

  15. Anselmo, A.C., Mitragotri, S., Samir Mitragotri, C.: Nanoparticles in the clinic. Bioeng. Transl. Med. 1, 10–29 (2016). https://doi.org/10.1002/BTM2.10003

    Article  Google Scholar 

  16. Anselmo, A.C., Mitragotri, S.: Nanoparticles in the clinic: An update post COVID‐19 vaccines. Bioeng. Transl. Med. 6, (2021). https://doi.org/10.1002/BTM2.10246

  17. U.S. Food and Drug Administration: Nanotechnology—Over a Decade of Progress and Innovation (2020)

    Google Scholar 

  18. Clinicaltrials.gov: Search of: nanoparticle Recruiting, Not yet recruiting, Available, Active, not recruiting Studies Cancer—List Results—ClinicalTrials.gov. https://clinicaltrials.gov/ct2/results?term=nanoparticle&cond=Cancer&Search=Apply&recrs=b&recrs=a&recrs=d&recrs=c&age_v=&gndr=&type=&rslt=. Accessed 10 Feb 2022

  19. Swana, M., Blee, J., Stillman, N., Ives, J., Hauert, S.: Swarms: the next frontier for cancer nanomedicine—Supplementary Material (2022). https://doi.org/10.5281/ZENODO.6077149

  20. Search of: nanoparticle Recruiting, Not yet recruiting, Available, Active, not recruiting Studies—List Results—ClinicalTrials.gov, https://clinicaltrials.gov/ct2/results?term=nanoparticle&recrs=abcd. Accessed 20 Nov 2021

  21. Wilhelm, S., Tavares, A.J., Dai, Q., Ohta, S., Audet, J., Dvorak, H.F., Chan, W.C.W.: Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1(5), 1–12 (2016). https://doi.org/10.1038/natrevmats.2016.14

  22. Đorđević, S., Gonzalez, M.M., Conejos-Sánchez, I., Carreira, B., Pozzi, S., Acúrcio, R.C., Satchi-Fainaro, R., Florindo, H.F., Vicent, M.J.: Current hurdles to the translation of nanomedicines from bench to the clinic. Drug Deliv. Transl. Res. 12(3), 500–525 (2021). https://doi.org/10.1007/S13346-021-01024-2

  23. Thi, T.T.H., Suys, E.J.A., Lee, J.S., Nguyen, D.H., Park, K.D., Truong, N.P.: Lipid-based nanoparticles in the clinic and clinical trials: from cancer nanomedicine to COVID-19 Vaccines. Vaccines 9, (2021). https://doi.org/10.3390/VACCINES9040359

  24. Feynman, R.P.: There is plenty of room at the bottom. Eng. Sci. 23, 22–36 (1960)

    Google Scholar 

  25. Kay, E.R., Leigh, D.A.: Rise of the molecular machines. Angew. Chem. Int. Ed. 54, 10080–10088 (2015). https://doi.org/10.1002/ANIE.201503375

    Article  Google Scholar 

  26. Drexler, K.: Molecular directions in nanotechnology. Nanotechnology 2, 113–118 (1991)

    Article  Google Scholar 

  27. Baroncini, M., Casimiro, L., de Vet, C., Groppi, J., Silvi, S., Credi, A.: Making and operating molecular machines: a multidisciplinary challenge. Chem. Open 7, 169–179 (2018). https://doi.org/10.1002/OPEN.201700181

    Article  Google Scholar 

  28. Sluysmans, D., Fraser Stoddart, J.: Growing community of artificial molecular machinists. Proc. Natl. Acad. Sci. 115, 9359–9361 (2018). https://doi.org/10.1073/PNAS.1813973115

    Article  Google Scholar 

  29. Kassem, S., van Leeuwen, T., Lubbe, A.S., Wilson, M.R., Feringa, B.L., Leigh, D.A.: Artificial molecular motors. Chem. Soc. Rev. 46, 2592–2621 (2017)

    Article  Google Scholar 

  30. Amir, Y., Ben-Ishay, E., Levner, D., Ittah, S., Abu-Horowitz, A., Bachelet, I.: Universal computing by DNA origami robots in a living animal. Nat. Nanotechnol. 9, 353–357 (2014). https://doi.org/10.1038/nnano.2014.58

    Article  Google Scholar 

  31. Manjunath, A., Kishore, V.: The promising future in medicine: nanorobots. Biomed. Sci. Eng. 2, 42–47 (2014). https://doi.org/10.12691/BSE-2-2-3

  32. Ackerman, E.: Robotic Micro-Scallops Can Swim Through Your Eyeballs—IEEE Spectrum. https://spectrum.ieee.org/robotic-microscallops-can-swim-through-your-eyeballs. Accessed 26 Nov 2021

  33. Qiu, T., Lee, T.C., Mark, A.G., Morozov, K.I., Münster, R., Mierka, O., Turek, S., Leshansky, A.M., Fischer, P.: Swimming by reciprocal motion at low Reynolds number. Nat. Commun. 5, (2014). https://doi.org/10.1038/NCOMMS6119

  34. Khalil, I.S.M., Dijkslag, H.C., Abelmann, L., Misra, S.: MagnetoSperm: a microrobot that navigates using weak magnetic fields. Appl. Phys. Lett. 104, 223701 (2014). https://doi.org/10.1063/1.4880035

    Article  Google Scholar 

  35. Jang, B., Gutman, E., Stucki, N., Seitz, B.F., Wendel-García, P.D., Newton, T., Pokki, J., Ergeneman, O., Pané, S., Or, Y., Nelson, B.J.: Undulatory locomotion of magnetic multilink nanoswimmers. Nano Lett. 15, 4829–4833 (2015). https://doi.org/10.1021/ACS.NANOLETT.5B01981/SUPPL_FILE/NL5B01981_SI_007.AVI

    Article  Google Scholar 

  36. Orozco, C.A., Liu, D., Li, Y., Alemany, L.B., Pal, R., Krishnan, S., Tour, J.M.: Visible-light-activated molecular nanomachines kill pancreatic cancer cells. (2019). https://doi.org/10.1021/acsami.9b21497

    Article  Google Scholar 

  37. Jang, J., Lim, D.-H., Choi, I.-H.: The impact of nanomaterials in immune system. Immune Netw. 10, 85 (2010). https://doi.org/10.4110/IN.2010.10.3.85

    Article  Google Scholar 

  38. Bionaut Labs: FDA Grants Humanitarian Use Device Designation to Bionaut Labs for Treatment of Dandy Walker Syndrome—Bionaut Labs. https://bionautlabs.com/fda-grants-humanitarian-use-device-designation-to-bionaut-labs-for-treatment-of-dandy-walker-syndrome/. Accessed 10 Feb 2022

  39. Wang, Q., Zhang, L.: External power-driven microrobotic swarm: from fundamental understanding to imaging-guided delivery. ACS Nano 15, 149–174 (2021). https://doi.org/10.1021/ACSNANO.0C07753

    Article  Google Scholar 

  40. Yu, J., Jin, D., Chan, K.F., Wang, Q., Yuan, K., Zhang, L.: Active generation and magnetic actuation of microrobotic swarms in bio-fluids. Nat. Commun. 2019 10:1. 10, 1–12 (2019). https://doi.org/10.1038/s41467-019-13576-6

  41. Koleoso, M., Feng, X., Xue, Y., Li, Q., Munshi, T., Chen, X.: Micro/nanoscale magnetic robots for biomedical applications. Mater. Today Bio. 8, 100085 (2020). https://doi.org/10.1016/J.MTBIO.2020.100085

    Article  Google Scholar 

  42. Azizipour, N., Avazpour, R., Rosenzweig, D.H., Sawan, M., Ajji, A.: Evolution of biochip technology: a review from lab-on-a-chip to organ-on-a-chip. Micromachines 11, 1–15 (2020). https://doi.org/10.3390/MI11060599

    Article  Google Scholar 

  43. Ali, J., Cheang, U.K., Martindale, J.D., Jabbarzadeh, M., Fu, H.C., Jun Kim, M.: Bacteria-inspired nanorobots with flagellar polymorphic transformations and bundling. Sci. Rep. 7(1), 1–10 (2017). https://doi.org/10.1038/s41598-017-14457-y

  44. Koudelka, K.J., Pitek, A.S., Manchester, M., Steinmetz, N.F.: Virus-Based Nanoparticles as Versatile Nanomachines. 2, 379–401 (2015). https://doi.org/10.1146/annurev-virology-100114-055141

  45. Chen, A.Y., Deng, Z., Billings, A.N., Seker, U.O.S., Lu, M.Y., Citorik, R.J., Zakeri, B., Lu, T.K.: Synthesis and patterning of tunable multiscale materials with engineered cells. Nat. Mater. 13, 515–523 (2014). https://doi.org/10.1038/nmat3912

    Article  Google Scholar 

  46. Shin, S.R., Migliori, B., Miccoli, B., Li, Y.C., Mostafalu, P., Seo, J., Mandla, S., Enrico, A., Antona, S., Sabarish, R., Zheng, T., Pirrami, L., Zhang, K., Zhang, Y.S., Wan, K.T., Demarchi, D., Dokmeci, M.R., Khademhosseini, A.: Electrically driven microengineered bio-inspired soft robots. Adv. Mater. (Deerfield Beach, Fla.). 30, (2018). https://doi.org/10.1002/ADMA.201704189

  47. Hu, M., Ge, X., Chen, X., Mao, W., Qian, X., Yuan, W.E.: Micro/nanorobot: a promising targeted drug delivery system. Pharmaceutics 12, 1–18 (2020). https://doi.org/10.3390/PHARMACEUTICS12070665

    Article  Google Scholar 

  48. Zhou, H., Mayorga-Martinez, C.C., Pané, S., Zhang, L., Pumera, M.: Magnetically driven micro and nanorobots. Chem Rev 121, 4999–5041 (2021). https://doi.org/10.1021/ACS.CHEMREV.0C01234

    Article  Google Scholar 

  49. Wang, J., Xiong, Z., Tang, J.: The encoding of light-driven micro/nanorobots: from single to swarming systems. Adv. Intell. Syst. 3, 2000170 (2021). https://doi.org/10.1002/AISY.202000170

    Article  Google Scholar 

  50. Aghakhani, A., Yasa, O., Wrede, P., Sitti, M.: Acoustically powered surface-slipping mobile microrobots. Proc. Natl. Acad. Sci. U.S.A. 117, 3469–3477 (2020). https://doi.org/10.1073/PNAS.1920099117/VIDEO-10

    Article  Google Scholar 

  51. Kriegman, S., Blackiston, D., Levin, M., Bongard, J.: Kinematic self-replication in reconfigurable organisms. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 118. https://doi.org/10.1073/PNAS.2112672118/-/DCSUPPLEMENTAL (2021)

  52. Blackiston, D., Lederer, E., Kriegman, S., Garnier, S., Bongard, J., Levin, M.: A cellular platform for the development of synthetic living machines. Sci. Robot. 6, (2021). https://doi.org/10.1126/SCIROBOTICS.ABF1571

  53. Kriegman, S., Blackiston, D., Levin, M., Bongard, J.: A scalable pipeline for designing reconfigurable organisms. Proc. Natl. Acad. Sci. U.S.A. 117, 1853–1859 (2020). https://doi.org/10.1073/PNAS.1910837117/-/DCSUPPLEMENTAL

    Article  Google Scholar 

  54. Saadeh, Y., Vyas, D.: Nanorobotic applications in medicine: current proposals and designs. Am J Robot. Surg. 1, 4 (2014). https://doi.org/10.1166/AJRS.2014.1010

    Article  Google Scholar 

  55. Boonrong, P., Kaewkamnerdpong, B.: Canonical PSO based nanorobot control for blood vessel repair. Int. J. Biomed. Biol Eng 5, 428–478 (2011)

    Google Scholar 

  56. Alhafnawi, M., Hauert, S., O’Dowd, P.: Self-Organised saliency detection and representation in robot swarms. IEEE Robot. Autom. Lett. 6, 1487–1494 (2021). https://doi.org/10.1109/LRA.2021.3057567

    Article  Google Scholar 

  57. Molins, P., Stillman, N., Hauert, S.: Trail formation using large swarms of minimal robots. 50, 693–710 (2019). https://doi.org/10.1080/01969722.2019.1677336

  58. Stillman, N.R., Balaz, I., Tsompanas, M.A., Kovacevic, M., Azimi, S., Lafond, S., Adamatzky, A., Hauert, S.: Evolutionary computational platform for the automatic discovery of nanocarriers for cancer treatment. NPJ Comput. Mater. 7, 150 (2021). https://doi.org/10.1038/S41524-021-00614-5

  59. Akçan, R., Aydogan, H.C., Yildirim, M.Ş, Taştekin, B., Sağlam, N.: Nanotoxicity: a challenge for future medicine. Turk. J. Med. Sci. 50, 1180 (2020). https://doi.org/10.3906/SAG-1912-209

    Article  Google Scholar 

  60. Lewinski, N., Colvin, V., Drezek, R.: Cytotoxicity of nanopartides. Small 4, 26–49 (2008). https://doi.org/10.1002/smll.200700595

    Article  Google Scholar 

  61. Arora, S., Rajwade, J.M., Paknikar, K.M.: Nanotoxicology and in vitro studies: the need of the hour. Toxicol. Appl. Pharmacol. 258, 151–165 (2012). https://doi.org/10.1016/J.TAAP.2011.11.010

    Article  Google Scholar 

  62. Xue, H.Y., Liu, S., Wong, H.L.: Nanotoxicity: a key obstacle to clinical translation of siRNA-based nanomedicine. Nanomedicine (London, England). 9, 295 (2014). https://doi.org/10.2217/NNM.13.204

  63. Jackson, S.E., Chester, J.D.: Personalised cancer medicine. Int. J. Cancer 137, 262–266 (2015). https://doi.org/10.1002/IJC.28940

    Article  Google Scholar 

  64. Krzyszczyk, P., Acevedo, A., Davidoff, E.J., Timmins, L.M., Marrero-Berrios, I., Patel, M., White, C., Lowe, C., Sherba, J.J., Hartmanshenn, C., O’Neill, K.M., Balter, M.L., Fritz, Z.R., Androulakis, I.P., Schloss, R.S., Yarmush, M.L.: The growing role of precision and personalized medicine for cancer treatment. Technology 6, 79 (2018). https://doi.org/10.1142/S2339547818300020

    Article  Google Scholar 

  65. Ceylan, H., Yasa, I.C., Kilic, U., Hu, W., Sitti, M.: Translational prospects of untethered medical microrobots. Prog. Biomed. Eng. 1, 012002 (2019). https://doi.org/10.1088/2516-1091/AB22D5

    Article  Google Scholar 

  66. Schmidt, C.K., Medina-Sánchez, M., Edmondson, R.J., Schmidt, O.G.: Engineering microrobots for targeted cancer therapies from a medical perspective. Nat. Commun. 11, 1–18 (2020). https://doi.org/10.1038/s41467-020-19322-7

  67. Liu, D., Wang, T., Lu, Y.: Untethered microrobots for active drug delivery: from rational design to clinical settings. Adv. Healthcare Mater. 11, 2102253 (2022). https://doi.org/10.1002/ADHM.202102253

    Article  Google Scholar 

  68. Dixit, S.S., Luqman, N.: Nanobots: development and future. Int. J. Biosens. Bioelectron. 2, (2017). https://doi.org/10.15406/IJBSBE.2017.02.00037

  69. Novotný, F., Wang, H., Pumera, M.: Nanorobots: machines squeezed between molecular motors and micromotors. Chem. 6, 867–884 (2020). https://doi.org/10.1016/J.CHEMPR.2019.12.028

    Article  Google Scholar 

  70. Birchley, G., Ives, J., Huxtable, R., Blazeby, J.: Conceptualising surgical innovation: an eliminativist proposal. HCA J. Health Philos. Policy 28, (2020). https://doi.org/10.1007/S10728-019-00380-Y

  71. Hua, S., de Matos, M.B.C., Metselaar, J.M., Storm, G.: Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: Pathways for translational development and commercialization. Front Pharmacol 9, (2018). https://doi.org/10.3389/FPHAR.2018.00790/FPHAR_09_00790_PDF.PDF

  72. Murday, J.S., Siegel, R.W., Stein, J., Wright, J.F.: Translational nanomedicine: Status assessment and opportunities. Nanomed. Nanotechnol. Biol. Med. 5, 251–273 (2009). https://doi.org/10.1016/j.nano.2009.06.001

  73. Satalkar, P., Elger, B.S., Hunziker, P., Shaw, D.: Challenges of clinical translation in nanomedicine: a qualitative study. Nanomed. Nanotechnol. Biol. Med. 12, 893–900 (2016). https://doi.org/10.1016/j.nano.2015.12.376

  74. Mudshinge, S.R., Deore, A.B., Patil, S., Bhalgat, C.M.: Nanoparticles: emerging carriers for drug delivery. Saudi Pharm. J. 19, 129–141 (2011). https://doi.org/10.1016/J.JSPS.2011.04.001

    Article  Google Scholar 

  75. Pudlarz, A., Szemraj, J.: Nanoparticles as carriers of proteins, peptides and other therapeutic molecules. Open Life Sci. 13, 285 (2018). https://doi.org/10.1515/BIOL-2018-0035

    Article  Google Scholar 

  76. Zoubari, G., Staufenbiel, S., Volz, P., Alexiev, U., Bodmeier, R.: Effect of drug solubility and lipid carrier on drug release from lipid nanoparticles for dermal delivery. Eur. J. Pharm. Biopharm. : Off. J. Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V. 110, 39–46 (2017). https://doi.org/10.1016/J.EJPB.2016.10.021

  77. Kim, J.H., Kim, Y.S., Kim, S., Park, J.H., Kim, K., Choi, K., Chung, H., Jeong, S.Y., Park, R.W., Kim, I.S., Kwon, I.C.: Hydrophobically modified glycol chitosan nanoparticles as carriers for paclitaxel. J. Control. Release: Off. J. Control. Release Soc. 111, 228–234 (2006). https://doi.org/10.1016/J.JCONREL.2005.12.013

    Article  Google Scholar 

  78. Barker, P.J., Branch, A.: The interaction of modern sunscreen formulations with surface coatings. Prog. Org. Coat. 62, 313–320 (2008). https://doi.org/10.1016/J.PORGCOAT.2008.01.008

    Article  Google Scholar 

  79. Steel Direct: Prevention of sunscreen damage. https://cdn.dcs.bluescope.com.au/download/technical-bulletin-tb-37-prevention-of-sunscreen-damage. Accessed 11 Dec 2021

  80. Tran, D.T., Salmon, R.: Potential photocarcinogenic effects of nanoparticle sunscreens. Australas. J. Dermatol. 52, 1–6 (2011). https://doi.org/10.1111/J.1440-0960.2010.00677.X

    Article  Google Scholar 

  81. Jacobs, J.F., van de Poel, I., Osseweijer, P.: Sunscreens with titanium dioxide (tio2) nano-particles: a societal experiment. NanoEthics 4, 103 (2010). https://doi.org/10.1007/S11569-010-0090-Y

    Article  Google Scholar 

  82. Carbonell, R.: Fresh concern over nano-particles hidden in sunscreen. https://www.abc.net.au/news/2013-03-05/fresh-concern-over-nano-particles-in-sunscreen/4552522. (2013)

  83. D’Silva, J., Bowman, D.M.: To label or not to label?—it’s more than a nano-sized question. Eur. J. Risk Regul. 1, 420–427 (2010). https://doi.org/10.1017/S1867299X00000891

    Article  Google Scholar 

  84. Gruére, G.P.: Labeling nano-enabled consumer products. Nano Today 6, 117–121 (2011). https://doi.org/10.1016/J.NANTOD.2011.02.005

    Article  Google Scholar 

  85. Akin, H., Yeo, S.K., Wirz, C.D., Scheufele, D.A., Brossard, D., Xenos, M.A., Corley, E.A.: Are attitudes toward labeling nano products linked to attitudes toward GMO? Exploring a potential ‘spillover’ effect for attitudes toward controversial technologies 6, 50–74 (2018). https://doi.org/10.1080/23299460.2018.1495026

  86. Shi, J., Kantoff, P.W., Wooster, R., Farokhzad, O.C.: Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17, 20–37 (2017). https://doi.org/10.1038/NRC.2016.108

    Article  Google Scholar 

  87. Patil, R.M.: Nanomedicine for early diagnosis of breast cancer. Nanomedicines Breast Cancer Theranostics 153–173 (2020). https://doi.org/10.1016/B978-0-12-820016-2.00008-2

  88. Lytton-Jean, A.K.R., Kauffman, K.J., Kaczmarek, J.C., Langer, R.: Cancer nanotherapeutics in clinical trials. Cancer Treat. Res. 166, 293–322 (2015). https://doi.org/10.1007/978-3-319-16555-4_13

    Article  Google Scholar 

  89. US Food and Drug Administration: Classification of Products as Drugs and Devices and Additional Product Classification Issues FDA, https://www.fda.gov/regulatory-information/search-fda-guidance-documents/classification-products-drugs-and-devices-and-additional-product-classification-issues. Accessed 03 Feb 2022

  90. Min, Y., Caster, J.M., Eblan, M.J., Wang, A.Z.: Clinical translation of nanomedicine. Chem. Rev. 115, 11147 (2015). https://doi.org/10.1021/ACS.CHEMREV.5B00116

    Article  Google Scholar 

  91. Muthu, M.S., Leong, D.T., Mei, L., Feng, S.S.: Nanotheranostics—application and further development of nanomedicine strategies for advanced theranostics. Theranostics 4, 660 (2014). https://doi.org/10.7150/THNO.8698

    Article  Google Scholar 

  92. Klein, K., Stolk, P., de Bruin, M.L., Leufkens, H.G.M., Crommelin, D.J.A., de Vlieger, J.S.B.: The EU regulatory landscape of non-biological complex drugs (NBCDs) follow-on products: observations and recommendations. Eur. J. Pharm. Sci. 133, 228–235 (2019). https://doi.org/10.1016/J.EJPS.2019.03.029

    Article  Google Scholar 

  93. Gaspar, R.S., Silva-Lima, B., Magro, F., Alcobia, A., da Costa, F.L., Feio, J.: Non-biological complex drugs (NBCDs): complex pharmaceuticals in need of individual robust clinical assessment before any therapeutic equivalence decision. Front. Med. 7, 590527 (2020). https://doi.org/10.3389/FMED.2020.590527

    Article  Google Scholar 

  94. Schellekens, H., Stegemann, S., Weinstein, V., de Vlieger, J.S.B., Flühmann, B., Mühlebach, S., Gaspar, R., Shah, V.P., Crommelin, D.J.A.: How to regulate nonbiological complex drugs (NBCD) and their follow-on versions: points to consider. AAPS J. 16, 15–21 (2014). https://doi.org/10.1208/S12248-013-9533-Z

    Article  Google Scholar 

  95. Ives, J.: A method of reflexive balancing in a pragmatic, interdisciplinary and reflexive bioethics. Bioethics 28, 302–312 (2014). https://doi.org/10.1111/BIOE.12018

    Article  Google Scholar 

  96. Quigley, M., Ayihongbe, S.: Everyday cyborgs: on integrated persons and integrated goods. Med. Law Rev. 26, 276–308 (2018). https://doi.org/10.1093/MEDLAW/FWY003

    Article  Google Scholar 

  97. Harrison, P., Wolyniak, J.: The history of ‘transhumanism.’ Notes Queries 62, 465–467 (2015). https://doi.org/10.1093/NOTESJ/GJV080

    Article  Google Scholar 

  98. Royal Academy of Engineering: Nanoscience and nanotechnologies: opportunities and uncertainties (2004)

    Google Scholar 

  99. Fischer, S.: Regulating nanomedicine: new nano tools offer great promise for the future?if regulators can solve the difficulties that hold development back. IEEE Pulse 5, 21–24 (2014). https://doi.org/10.1109/MPUL.2013.2296797

    Article  Google Scholar 

  100. Pinker, S.: The moral imperative for bioethics. https://www.bostonglobe.com/opinion/2015/07/31/the-moral-imperative-for-bioethics/JmEkoyzlTAu9oQV76JrK9N/story.html (2015)

  101. Yu, J., Wang, B., Du, X., Wang, Q., Zhang, L.: Ultra-extensible ribbon-like magnetic microswarm. Nat. Commun. 9, 1–9 (2018). https://doi.org/10.1038/s41467-018-05749-6

  102. Soares, S., Sousa, J., Pais, A., Vitorino, C.: Nanomedicine: principles, properties, and regulatory issues. Front. Chem. 6, 360 (2018). https://doi.org/10.3389/FCHEM.2018.00360

    Article  Google Scholar 

  103. Bawa, R., Johnson, S.: The ethical dimensions of nanomedicine. Med. Clin. North Am. 91, 881–887 (2007). https://doi.org/10.1016/J.MCNA.2007.05.007

    Article  Google Scholar 

  104. Demetzos, C.: Regulatory framework for nanomedicines. Pharm. Nanotechnol. 189–203 (2016). https://doi.org/10.1007/978-981-10-0791-0_7

  105. Tinkle, S., Mcneil, S.E., Mühlebach, S., Bawa, R., Borchard, G., Barenholz, Y.C., Tamarkin, L., Desai, N.: Nanomedicines: addressing the scientific and regulatory gap. Ann. N. Y. Acad. Sci. 1313, 35–56 (2014). https://doi.org/10.1111/NYAS.12403

    Article  Google Scholar 

  106. Chan, V.S.W.: Nanomedicine: an unresolved regulatory issue. Regul. Toxicol. Pharmacol. 46, 218–224 (2006). https://doi.org/10.1016/J.YRTPH.2006.04.009

    Article  Google Scholar 

  107. Vishakha Tambe, Maheshwari, R., Chourasiya, Y., Choudhury, H., Gorain, B., Tekade, R.K.: Chapter 18. clinical aspects and regulatory requirements for nanomedicines. In: Tekade, R.K. (ed.) In Advances in Pharmaceutical Product Development and Research, Basic Fundamentals of Drug Delivery, pp. 733–752. Elsevier (2019)

    Google Scholar 

  108. Mühlebach, S., Borchard, G., Yildiz, S.: Regulatory challenges and approaches to characterize nanomedicines and their follow-on similars. Nanomedicine 10, 659–674 (2015). https://doi.org/10.2217/NNM.14.189

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jonathan Ives or Sabine Hauert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Swana, M., Blee, J., Stillman, N., Ives, J., Hauert, S. (2022). Swarms: The Next Frontier for Cancer Nanomedicine. In: Balaz, I., Adamatzky, A. (eds) Cancer, Complexity, Computation. Emergence, Complexity and Computation, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-031-04379-6_12

Download citation

Publish with us

Policies and ethics