Skip to main content

Cyprus Beaches in the Context of Parabolic Bay Shaped Beach Model

  • Conference paper
  • First Online:
Climate Change, Natural Resources and Sustainable Environmental Management (NRSEM 2021)

Abstract

The importance of shoreline protection has attracted researchers in terms of finding new and applicable methods. The equilibrium planform concept is being widely used and modified over more than two decades. Cyprus has relatively high economical dependency on its sandy shorelines, which are mostly natural headland bays. The fact that most of the rivers located in the island are dried out, duo to careless dam construction over the years; seems to have compromised the main sediment inflow resource for the coastal regions. Hence the existing compulsion for more forecasting and planning, concerning shoreline protection is very clear. Application of parabolic bay shape approach to coastal environments of east of Cyprus have been carried out, using parabolic bay shape approach and two different modifications of the approach. Concerning the shoreline equilibrium, the tested coastlines are in general following a static conditions. However, due to unreliable diffraction points associated with headland bays, in some cases, the coastline is not in a desirable stable situation. Accordingly various suggestions for headland extension are presented at various regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCarroll, R.J., et al.: High-efficiency gravel longshore sediment transport and headland bypassing over an extreme wave event. Earth Surf. Process Landf. 44, 2720–2727 (2019). https://doi.org/10.1002/esp.4692

    Article  Google Scholar 

  2. Noujas, V., Kankara, R.S., Rasheed, K.: (2018) Estimation of longshore sediment transport rate for a typical pocket beach along west coast of India. Mar. Geodesy 41, 201–216 (2018). https://doi.org/10.1080/01490419.2017.1422818

    Article  Google Scholar 

  3. Bayram, A., Larson, M., Hanson, H.: A new formula for the total longshore sediment transport rate. Coast. Eng. 54(9), 700–710 (2007). https://doi.org/10.1016/j.coastaleng.2007.04.001

    Article  Google Scholar 

  4. Ding, Y., Styles, R., Kim, S.C., Permenter, R.L., Frey, A.E.: Cross-shore sediment transport for modeling long-term shoreline evolution. J. Waterw. Port Coast. Ocean Eng. 147(4), 04021014 (2021). https://doi.org/10.1061/(ASCE)WW.1943-5460.0000644

    Article  Google Scholar 

  5. Aragonés, L., Pagán, J.I., López, M.P., Serra, J.C.: Cross-shore sediment transport quantification on depth of closure calculation from profile surveys. Coast. Eng. 151, 64–77 (2019). https://doi.org/10.1016/j.coastaleng.2019.04.002

    Article  Google Scholar 

  6. Türker, U., Kabdaşlı, M.S.: Verification of sediment transport rate parameter on cross-shore sediment transport analysis. Ocean Eng. 34(8–9), 1096–1103 (2007). https://doi.org/10.1016/j.oceaneng.2006.08.002

    Article  Google Scholar 

  7. Türker, U., Yagci, O., Kabdasli, M.S.: Impact of nearshore vegetation on coastal dune erosion: assessment through laboratory experiments. Environ. Earth Sci. 78(19), 1–14 (2019). https://doi.org/10.1007/s12665-019-8602-8

    Article  Google Scholar 

  8. Pranzini, E.: Shore protection in Italy: from hard to soft engineering and back. Ocean Coast. Manag. 156, 43–57 (2018). https://doi.org/10.1016/j.ocecoaman.2017.04.018

    Article  Google Scholar 

  9. Morris, R.L., Konlechner, T.M., Ghisalberti, M., Swearer, S.E.: From grey to green: efficacy of eco-engineering solutions for nature-based coastal defense. Glob. Chang. Biol. 24(5), 1827–1842 (2018). https://doi.org/10.1111/gcb.14063

    Article  Google Scholar 

  10. Różyński, G.: Unexpected property of dean-type equilibrium beach profiles. J. Waterw. Port Coast. Ocean Eng. 147(5), 06021001 (2021). https://doi.org/10.1061/(ASCE)WW.1943-5460.0000664

    Article  Google Scholar 

  11. Mieras, R.S., Puleo, J.A., Anderson, D., Hsu, T.J., Cox, D.T., Calantoni, J.: Relative contributions of bed load and suspended load to sediment transport under skewed-asymmetric waves on a sandbar crest. J. Geophys. Res. Oceans 124(2), 1294–1321 (2019). https://doi.org/10.1029/2018JC014564

    Article  Google Scholar 

  12. Riazi, A., Türker, U.: Equilibrium beach profiles: erosion and accretion balanced approach. Water Environ. J. 31(3), 317–323 (2017). https://doi.org/10.1111/wej.12245

    Article  Google Scholar 

  13. Li, Z.L., Li, W.Q., Chen, Z.S., Zhu, Y.M.: Influencing factors and classifications of arc-shaped coasts in South China. Acta Geogr. Sin. 69(5), 595–606 (2014)

    Google Scholar 

  14. Yu, J.T., Chen, Z.S.: Study on headland-bay sandy coast stability in South China coasts. China Ocean Eng. 25(1), 1 (2011). https://doi.org/10.1007/s13344-011-0001-1

    Article  CAS  Google Scholar 

  15. Yasso, W.E.: Plan geometry of headland bay beaches. Geology 73, 702–714 (1965). https://doi.org/10.1086/627111

    Article  Google Scholar 

  16. Hsu, J., Evans, C.: Parabolic bay shapes and applications. Proc. Inst. Civ. Eng. 87(4), 557–570 (1989). https://doi.org/10.1680/iicep.1989.3778

    Article  Google Scholar 

  17. Moreno, L.J., Kraus, N.C.: Equilibrium shape of headland-bay beaches for engineering design. In: Proceedings of the Coastal Sediments 1999, pp 860–875. American Society of Civil Engineers, New York (1999)

    Google Scholar 

  18. Li, B., Zhuang, Z., Cao, L., Du, F.: Application of the static headland-bay beach concept to a sandy beach: a new elliptical model. J. Ocean Univ. China 19(1), 81–89 (2020). https://doi.org/10.1007/s11802-020-3899-1

    Article  Google Scholar 

  19. Benedet, L., Klein, A.H., Hsu, J.: Practical insights and applicability of empirical bay shape equations. In: Coastal Engineering 2004, pp. 2181–2193. ICCE, Portugal (2004). https://doi.org/10.1142/9789812701916_0175

  20. Kayan, G., Riazi, A., Erten, E., Türker, U.: Peak unit discharge estimation based on ungauged watershed parameters. Environ. Earth Sci. 80(1), 1 (2021). https://doi.org/10.1007/s12665-020-09317-4

    Article  Google Scholar 

  21. Raabe, A.L.A., Klein, A.H., González, M., Medina, R.: MEPBAY and SMC: software tools to support different operational levels of headland-bay beach in coastal engineering projects. Coast. Eng. 57(2), 213–226 (2010). https://doi.org/10.1016/j.coastaleng.2009.10.008

    Article  Google Scholar 

  22. Klein, A.H., Vargas, A., Raabe, A.L.S.A., Hsu, J.R.: Visual assessment of bayed beach stability with computer software. Comput. Geosci. 29(10), 1249–1257 (2003). https://doi.org/10.1016/j.cageo.2003.08.002

    Article  Google Scholar 

  23. Silvester, R., Hsu, J.R.: Coastal Stabilization. Advanced Series on Ocean Engineering, vol. 14. World Science, Singapore (1997)

    Book  Google Scholar 

  24. Tan, S.K., Chiew, Y.M.: Analysis of bayed beaches in static equilibrium. J. Waterw. Port Coast. Ocean Eng. 120(2), 145–153 (1994). https://doi.org/10.1061/(ASCE)0733-950X(1994)120:2(145)

    Article  Google Scholar 

  25. Schiaffino, C.F., Brignone, M., Ferrari, M.: Application of the parabolic bay shape equation to sand and gravel beaches on Mediterranean coasts. Coast. Eng. 59(1), 57–63 (2012). https://doi.org/10.1016/j.coastaleng.2011.07.007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umut Türker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Layeghi, R., Riazi, A., Türker, U. (2022). Cyprus Beaches in the Context of Parabolic Bay Shaped Beach Model. In: Gökçekuş, H., Kassem, Y. (eds) Climate Change, Natural Resources and Sustainable Environmental Management. NRSEM 2021. Environmental Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-04375-8_20

Download citation

Publish with us

Policies and ethics