Skip to main content

The State of Applications and Impacts of Biotechnology in the Crop Sector

  • Chapter
  • First Online:
Agricultural Biotechnology in Sub-Saharan Africa

Abstract

Application of biotechnology in the crop sector in sub-Saharan African countries was considered based on both the extent (e.g. limited use in laboratories versus widespread field use) and context (e.g. cloning individual genes versus cloning a whole organism) of use. Biotechnology types were allocated to three groups—low-, medium- and high-tech—depending on their relative complexity. High-tech applications were only encountered in a few countries. Consequently, low- and medium-tech applications were more important for categorizing most countries. Only one country, South Africa, was categorized as having ‘very high’ use of biotechnology in the crop sector. Burkina Faso, Ethiopia, Kenya, Madagascar, Malawi, Nigeria, Sudan, Tanzania, Uganda and Zimbabwe were categorized as ‘high’ use, and Benin, Botswana, Cameroon, Côte d’Ivoire, Eswatini, Ghana, Lesotho, Mali, Mauritius, Mozambique, Namibia, Senegal, Sierra Leone and Zambia as ‘medium’. All other countries for which information was available were categorized as ‘low’ or ‘very low’ users of biotechnology in the crop sector. The crop sector has been the main beneficiary of initiatives to catalyse biotechnology research and application, with the CGIAR’s programmes being prominent in influencing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alhassan WS (2001) The status of agricultural biotechnology in selected West and Central African countries. International Institute of Tropical Agriculture, Ibadan

    Google Scholar 

  • Bailey R, Willoughby R, Grzywacz D (2014) On trial: agricultural biotechnology in Africa. Energy, environment and resources, Chatham House

    Google Scholar 

  • Bandyopadhyay R, Ortega-Beltran A, Akande A et al (2016) Biological control of aflatoxins in Africa: current status and potential challenges in the face of climate change. World Mycotoxin J 9(5):771–789. https://doi.org/10.3920/WMJ2016.2130

    Article  Google Scholar 

  • Bavier J (2017) How Monsanto’s GM cotton sowed trouble in Africa. Reuters Investigates. December 8 2017. Available via Reuters: https://www.reuters.com/investigates/special-report/monsanto-burkina-cotton/. Accessed 30 June 2021

  • Bouis H, Saltzman A, Low J, Ball A, Covic N (2017) An overview of the landscape and approach for biofortification in Africa. Afr J Food Agric Nutr Dev 17(2):11848–11864. https://doi.org/10.18697/ajfand.78.HarvestPlus01

  • Brink JA, Woodward BR, DaSilva EJ (1998) Plant biotechnology: a tool for development in Africa. Electron J Biotechnol 1(3):142–151

    Article  Google Scholar 

  • Bruce TJA, Midega CAO, Birkett MA, Pickett JA, Khan ZR (2010) Is quality more important than quantity? Insect behavioural responses to changes in a volatile blend after stemborer oviposition on an African grass. Biol Lett 6:314–317

    Article  CAS  PubMed  Google Scholar 

  • Chambers JA et al (2014) GM agricultural technologies for Africa: a state of affairs. Report of a study commissioned by the African Development Bank, IFPRI and AfDB, Washington and Abidjan

    Google Scholar 

  • De Moraes CM, Lewis WJ, Pare PW, Alborn HT, Tumlinson JH (1998) Herbivore-infested plants selectively attract parasitoids. Nature 393:570–573

    Article  Google Scholar 

  • Dowd-Uribe B, Schnurr MA (2016) Briefing: Burkina Faso’s reversal on genetically modified cotton and the implications for Africa. Afr Aff 115(458):161–172

    Article  Google Scholar 

  • Edwards JD, McCouch SR (2007) Molecular markers for use in plant molecular breeding and germplasm evaluation. In: FAO, Guimaraes EP, Ruane J et al (eds) Marker-assisted selection: Current status and future perspectives in crops, livestock, forestry and fish. FAO, Rome

    Google Scholar 

  • Eskola M, Kos G, Elliott CT et al (2019) Worldwide contamination of food-crops with mycotoxins: validity of the widely cited ‘FAO estimate’ of 25%. Crit Rev Food Sci Nutr 30:1–17

    Google Scholar 

  • FAO (2021) Global partnership initiative for plant breeding capacity building. FAO, Rome. Available via FAO: www.fao.org/in-action/plant-breeding/background/zh/. Accessed 30 June 2021

  • FARA (Forum for Agricultural Research in Africa) (2011) Status of biotechnology and biosafety in sub-Saharan Africa: a FARA 2009 study report. FARA Secretariat, Accra

    Google Scholar 

  • Farrow A, Muthoni-Andriatsitohaina R (eds) (2020) Atlas of common bean production in Africa, 2nd edn. PABRA/CIAT, Nairobi, p 260. ISBN: 978958694227-0

    Google Scholar 

  • Goedde L, Ooko-Ombaka A, Pais G (2019) Winning in Africa’s agricultural market. Our insights. McKinsey and Company Available via McKinsey: https://www.mckinsey.com/industries/agriculture/our-insights/winning-in-africas-agricultural-market. Accessed 26 Oct 2021

  • Gong YY, Cardwell K, Hounsa A et al (2002) Dietary aflatoxin exposure and impaired growth in young children from Benin and Togo: cross sectional study. Br Med J 325:20–22. https://doi.org/10.1136/bmj.325.7354.20

    Article  CAS  Google Scholar 

  • Gurmu F, Shimelis H, Laing MD (2014) The potential of orange-fleshed sweet potato to prevent vitamin a deficiency in Africa. Int J Vitam Nutr 84(1–2):65–78

    Article  CAS  Google Scholar 

  • Gurney AL, Slate J, Press MC et al (2006) A novel form of resistance in rice to the angiosperm parasite Striga hermonthica. New Phytol 169:199–208

    Article  CAS  PubMed  Google Scholar 

  • Habte E, Katung E, Yirga C et al (2021) Adoption of Common bean technologies and its impacts on productivity and household welfare in Ethiopia: lessons from tropical legumes project. Ethiopian Institute of Agricultural Research, Addis Ababa. https://doi.org/10.13140/RG.2.2.17130.03524

  • Hilker M, Meiners T (2006) Early herbivore alert: Insect eggs induce plant defense. J Chem Ecol 32:1379–1397

    Article  CAS  PubMed  Google Scholar 

  • Hooper AM, Hassanali A, Chamberlain K et al (2009) New genetic opportunities from legume intercrops for controlling Striga spp. parasitic weeds. Pest Manag Sci 65:546–552

    Article  CAS  PubMed  Google Scholar 

  • Hooper AM, Tsanuo MK, Chamberlain K et al (2010) Isoschaftoside, a C-glycosylflavonoid from desmodium uncinatum root exudate, is an allelochemical against the development of striga. Phytochemistry 71:904–908

    Article  CAS  PubMed  Google Scholar 

  • Hooper AM, Caulfield JC, Hao B et al (2015) Isolation and identification of Desmodium root exudates from drought tolerant species used as intercrops against Striga hermonthica. Phytochemistry 117:380–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IFPRI (2014) Africa’s next harvest II: biotechnology R&D driving agriculture productivity and economic development (Kenya). International Food Policy Research Institute, Washington, DC

    Google Scholar 

  • ISAAA (2015a) Biotech country facts and trends: Burkina Faso. ISAAA SEAsia Centre, Phillipines

    Google Scholar 

  • ISAAA (2015b) Biotech country facts & trends: South Africa. ISAAA SEAsia Centre, Phillipines

    Google Scholar 

  • ISAAA (2016) Global Status of Commercialized Biotech/GM Crops: 2016. ISAAA Brief No. 52. ISAAA, Ithaca

    Google Scholar 

  • ISAAA (2019) Global Status of Commercialized Biotech/GM Crops in 2019. ISAAA Brief No. 55. ISAAA, Ithaca

    Google Scholar 

  • Kabunga NS, Dubois T, Qaim M (2012) Yield effects of tissue culture bananas in Kenya: accounting for selection bias and the role of complementary inputs. J Agric Econ 63:444–464

    Article  Google Scholar 

  • Katungi E, Nduwarigira E, Ntukamazina N et al (2020) Food security and common bean productivity: impacts of improved bean technology adoption among smallholder farmers in Burundi. The Alliance of Bioversity International and CIAT, Nairobi. Available via CGSPACE: https://cgspace.cgiar.org/handle/10568/109119. Accessed 26 Oct 2021

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144

    Article  CAS  PubMed  Google Scholar 

  • Kfir R, Overholt WA, Khan ZR et al (2002) Biology and management of economically important lepidopteran cereal stem borers in Africa. Annu Rev Entomol 47:701–731

    Article  CAS  PubMed  Google Scholar 

  • Khan ZR, Hassanali A, Overholt W et al (2002) Control of witchweed Striga hermonthica by intercropping with Desmodium spp., and the mechanism defined as allelopathic. J Chem Ecol 28:1871–1885

    Article  CAS  PubMed  Google Scholar 

  • Khan ZR, Pickett JA, Hassanali A et al (2008) Desmodium species and associated biochemical traits for controlling Striga species: present and future prospects. Weed Res 48:302–306

    Article  CAS  Google Scholar 

  • Kikulwe EM, Kabunga NS, Qaim M (2012) Impact of tissue culture banana technology in Kenya: a difference-in-difference estimation approach. Discussion Papers, No. 117, Georg-August-Universität Göttingen, Courant Research Centre – Poverty, Equity and Growth (CRC-PEG), Göttingen

    Google Scholar 

  • Kiome R (2015) A strategic framework for transgenic research and product development in Africa: Report of a CGIAR Study. ILRI, Nairobi

    Google Scholar 

  • Konlambigue M, Ortega-Beltran A, Bandyopadhyay R et al (2020) Lessons learned on scaling Aflasafe® through commercialization in sub-Saharan Africa. International Food Policy Research Institute, Washington DC. Available via IFPRI: https://www.ifpri.org/publication/lessons-learned-scaling-aflasafe%C2%AEthrough-commercialization-sub-saharan-africa. Accessed 27 June 2021

  • Kyei F, Puobi R, EGadu1 S et al (2017) The science, acceptance and support of modern biotechnology in Africa. J Adv Biol Biotechnol 12(2):1–14

    Google Scholar 

  • Masiga CW, Mneney E, Wachira F et al (2013) Situational analysis of the current state of tissue culture application in the Eastern and Central Africa region. Association for Strengthening Agricultural Research in East and Central Africa (ASARECA), Entebbe Available via ASARECA: https://wwwasarecaorg/publication/situation-analysis-current-status-tissue-culture-application-eastern-and-central-africa. Accessed 29 Oct 2021

  • Midega CAO, Salifu D, Bruce TJ et al (2014) Cumulative effects and economic benefits of intercropping maize with food legumes on Striga hermonthica infestation. Field Crops Res 155:144–152

    Article  Google Scholar 

  • Midling MB (2011) Biotechnology adoption in Africa. Berkeley Undergraduate J 24(3):93–111

    Article  Google Scholar 

  • Moyo M, Bairu MW, Amoo SO et al (2011) Plant biotechnology in South Africa: micropropagation research endeavours, prospects and challenges. S Afr J Bot 77(4):996–1011

    Article  Google Scholar 

  • Mtui GY (2011) Status of Biotechnology in Eastern and Central Africa. Biotechnol Mol Biol Rev 6(9):183–198

    Google Scholar 

  • Muinga G, Marechera G, Macharia I et al (2019) Adoption of climate-smart DroughtTEGO® varieties in Kenya. Afr J Food Agric Nutr and Dev 19:15090–15108

    Google Scholar 

  • Mulder M (2003) National biotechnology survey. eGoliBio Life Sciences Incubator, Pretoria

    Google Scholar 

  • Mulugo L, Kyazze FB, Kibwika P et al (2020) Seed security factors driving farmer decisions on uptake of tissue culture banana seed in Central Uganda. Sustainability 12(23):10223. https://doi.org/10.3390/su122310223

    Article  Google Scholar 

  • Mutyambai DM, Bruce TJA, Midega CAO et al (2015) Responses of parasitoids to volatiles induced by Chilo partellus oviposition on teosinte, a wild ancestor of maize. J Chem Ecol 41:323–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muyanga M (2009) Smallholder adoption and economic impacts of tissue culture banana in Kenya. Afr J Biotechnol 8(23):6548–6555

    Google Scholar 

  • Njuguna M, Wambugu F, Acharya S et al (2010) Socio-economic impact of tissue culture banana (Musa Spp.) in Kenya through the whole value chain approach. In: Dubois T, Hauser C, Staver D et al (eds) Proceedings of the international conference on banana and plantain in Africa: Harnessing international partnerships to increase research impact, 5–9 October, 2008, Mombasa, Kenya. Acta Hortic, pp 77–86

    Google Scholar 

  • Olembo N, M’mboyi F, Oyugi K et al (2010) Status of crop biotechnology in sub-Saharan Africa. African Biotechnology Stakeholders Forum, Nairobi

    Google Scholar 

  • Oratungye KE, Rubyogo JC, Onyango P (2021a) Improving bean production and marketing in Africa (IBPMA) April 2020 – March 2021 Report, p 25. Alliance Bioversity CIAT, Rome. Available at https://alliancebioversityciat.org/publications-data/improving-bean-production-and-marketing-africa-ibpma-april-2020-march-2021-report. Accessed 28 Oct 2021

  • Oratungye, KE, Rubyogo JC, Onyango P (2021b) Improving food security, nutrition, incomes, natural resource base and gender equity for better livelihoods of smallholder households in sub-Saharan Africa, p 80. Available via CGSPACE: https://cgspace.cgiar.org/handle/10568/113988. Accessed 28 Oct 2021

  • Ouma E, Dubois T, Kabunga N et al (2013) Adoption and impact of tissue culture bananas in Burundi: an application of a propensity score matching approach. In: Blomme G, van Asten P, Vanlauwe B (eds) Banana systems in the humid highlands of sub-Saharan Africa. CABI, Oxfordshire, pp 2016–2223

    Google Scholar 

  • Qaim M (1999) Assessing the impact of banana biotechnology in Kenya. ISAAA Briefs 10. ISAAA, Ithaca, New York

    Google Scholar 

  • Quain MD, Asibuo JY (2009) Biotechnology for agriculture enhancement in Ghana: the challenges and opportunities. Asian Biotechnol Dev Rev 11(3):49–61

    Google Scholar 

  • Showalter AM, Heuberger S, Tabashnik BE et al (2009) A primer for using transgenic insecticidal cotton in developing countries. J Insect Sci 9(1):22. https://doi.org/10.1673/031.009.2201

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamiru A, Bruce TJ, Woodcock CM et al (2011) Maize landraces recruit egg and larval parasitoids in response to egg deposition by a herbivore. Ecol Lett 14:1075–1083

    Article  PubMed  Google Scholar 

  • Tamiru A, Bruce TJ, Midega CA et al (2012) Oviposition induced volatile emissions from African smallholder farmers’ maize varieties. J Chem Ecol 38:231–234

    Article  CAS  PubMed  Google Scholar 

  • Tamiru A, Khan ZR, Bruce TJA (2015) New directions for improving crop resistance to insects by breeding for egg induced defence. Curr Opin Insect Sci 9:51–55

    Article  PubMed  Google Scholar 

  • Tamiru A, Paliwal R, Manthi SJ et al (2020) Genome wide association analysis of a stemborer egg induced “call-for-help” defence trait in maize. Sci Rep 10:11205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Traore VSE (2016) BT cotton in Burkina Faso: the impacts and lessons. Was GMOs a necessary intervention? National Conference on “Just Governance: The Nigerian Biosafety Act, GMOs and Implications for Nigerians and Africa”, Abuja May 24–25, 2016. Available via AFJN: http://aefjn.org/wp-content/uploads/2016/05/Edgar_Present_Conference_Abuja.pdf

  • Tsanuo MK, Hassanali A, Hooper AM et al (2003) Isoflavanones from the allelopathic aqueous root exudates of Desmodium uncinatum. Phytochemistry 64:265–273

    Article  CAS  PubMed  Google Scholar 

  • UNDP, UNESCO (1994) African Network of Microbiological Resources Centres (MIRCENs) in biofertilizer production and use. Project findings and recommendations, UNDP, Paris

    Google Scholar 

  • USDA (2016) Biotechnology frequently asked questions (FAQs). In U.S. Department of Agriculture. Available via USDA: https://www.usda.gov/topics/biotechnology/biotechnology-frequently-asked-questions-faqs. Accessed 29 June 2021

  • Virgin I, Bhagavan M, Komen J et al (2007) Agricultural biotechnology and small-scale farmers in Eastern and Southern Africa. Stockholm Environment Institute, Stockholm

    Google Scholar 

  • Walker T, Alene A, Ndjeunga J et al (2014) Measuring the effectiveness of crop improvement research in sub-Saharan Africa from the perspectives of varietal output, adoption, and change: 20 crops, 30 countries, and 1150 cultivars in farmers’ fields. Report of the Standing Panel on Impact Assessment (SPIA), CGIAR Independent Science and Partnership Council (ISPC) Secretariat, Rome

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. O. Rege .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rege, J.E.O., Kiambi, D., Ochieng, J.W., Midega, C., Sones, K. (2022). The State of Applications and Impacts of Biotechnology in the Crop Sector. In: Rege, J.E.O., Sones, K. (eds) Agricultural Biotechnology in Sub-Saharan Africa. Springer, Cham. https://doi.org/10.1007/978-3-031-04349-9_4

Download citation

Publish with us

Policies and ethics