Skip to main content

Crystalline Undulators

  • Chapter
  • First Online:
Novel Lights Sources Beyond Free Electron Lasers

Part of the book series: Particle Acceleration and Detection ((PARTICLE))

  • 465 Accesses

Abstract

The basic idea of a Crystalline Undulator (CU) is formulated, and the features that distinguish this device from conventional undulators based on the action of the magnetic field are stressed. Results of numerical calculations of the spectra of electromagnetic radiation emitted by ultra-relativistic electrons and positrons in periodically bent oriented crystals are presented. The interplay of different motions of the channeling particles, including the channeling oscillations and the undulator motion, in forming the emission spectrum is discussed. The results presented refer to two different schemes of the periodic bending: (i) the Large-Amplitude Long-Period, \(d \ll a \ll \lambda _{\mathrm{u}}\), and (ii) the Small-Amplitude Short-Period, \(d > a\). Wherever available the results of numerical simulations are compared with the experimental data or/and the results of calculations carried out by accompanying propagation of ultra-relativistic projectiles. In an exemplary case study, the brilliance of radiation emitted in a CU-LS by available positron beams is estimated. Intensity of CU radiation in the photon energy range \(10^0-10^1\) MeV, which is inaccessible to conventional synchrotrons, undulators and XFELs, greatly exceeds that of laser-Compton scattering LSs and can be higher than predicted in the Gamma Factory proposal to CERN. The result of estimations is confirmed by means of accurate numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Fore the sake of comparison the data presented below is compared to the brilliance available at the XFEL facilities which operate at much lower energies of the emitted radiation.

References

  1. Kumakhov, M.A.: On the theory of electromagnetic radiation of charged particles in a crystal. Phys. Lett. 57A, 17–18 (1976)

    Article  Google Scholar 

  2. Bezchastnov, V.G., Korol, A.V., Solov’yov, A.V.: Radiation from multi-GeV electrons and positrons in periodically bent silicon crystal. J. Phys. B 47, 195401 (2014)

    Article  ADS  Google Scholar 

  3. Korol, A.V., Solov’yov, A.V.: Crystal-based intensive gamma-ray light sources. Europ. Phys. J. D 74, 201 (2020)

    Article  ADS  Google Scholar 

  4. Korol, A.V., Solov’yov, A.V., Greiner, W.: Channeling and Radiation in Periodically Bent Crystals, 2nd edn. Springer, Berlin, Heidelberg (2014)

    Book  Google Scholar 

  5. Greiner, W., Korol, A.V., Kostyuk, A., Solov’yov, A.V.: Vorrichtung und Verfahren zur Erzeugung electromagnetischer Strahlung. Application for German Patent, June 14, Ref.: 10 2010 023 632.2 (2010)

    Google Scholar 

  6. Korol, A.V., Solov’yov, A.V., Greiner, W.: Photon emission by an ultra-relativistic particle channeling in a periodically bent crystal. Int. J. Mod. Phys. E 8, 49–100 (1999)

    Article  ADS  Google Scholar 

  7. Korol, A.V., Solov’yov, A.V., Greiner, W.: Channeling of positrons through periodically bent crystals: on the feasibility of crystalline undulator and gamma-laser. Int. J. Mod. Phys. E 13, 867–916 (2004)

    Article  ADS  Google Scholar 

  8. Korol, A.V., Solov’yov, A.V., Greiner, W.: Coherent radiation of an ultrarelativistic charged particle channeled in a periodically bent crystal. J. Phys. G Nucl. Part. Phys. 24, L45–L53 (1998)

    Google Scholar 

  9. Lindhard, J.: Influence of crystal lattice on motion of energetic charged particles. K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 34, 1–64 (1965)

    Google Scholar 

  10. Kumakhov, M.A. and Komarov, F.F.: Radiation from Charged Particles in Solids AIP, New York (1989)

    Google Scholar 

  11. Ginzburg, V.L.: Radiation of microwaves and their absorption in air. Bull. Acad. Sci. USSR, Ser. Phys. 11, 165 (1947) (in Russian)

    Google Scholar 

  12. Motz, H.: Applications of the radiation from fast electron beams. J. Appl. Phys. 22, 527–534 (1951)

    Google Scholar 

  13. Alferov, D.F., Bashmakov, Yu.A., Cherenkov, P.A.: Radiation from relativistic electrons in a magnetic undulator. Sov. Phys. - Uspekhi 32, 200–227 (1989)

    Article  ADS  Google Scholar 

  14. Barbini, R., Ciocci, F., Datolli, G., Gianessi, L.: Spectral properties of the undulator magnets radiation: analytical and numerical treatment. Rivista del Nuovo Cimento 13, 1–65 (1990)

    Article  ADS  Google Scholar 

  15. Rullhusen, P., Artru, X., Dhez, P.: Novel Radiation Sources Using Relativistic Electrons. World Scientific, Singapore (1998)

    Google Scholar 

  16. Schneider-Muntau, H.J., Toth, J., Weijers, H.W.: Generation of the highest continuous magnetic fields. IEEE Trans. Appl. Supercond. 14, 1245–1252 (2004)

    Google Scholar 

  17. Olive, K.A., et al.: (Particle Data Group): Review of Particle Physics. Chin. Phys. C 38, 090001 (2014)

    Google Scholar 

  18. The European X-ray Laser Project XFEL. http://www.xfel.eu/

  19. Backe, H., Krambrich, D., Lauth, W., Hansen, J.L., Uggerhøj, U.K.I.: X-ray emission from a crystal undulator: experimental results at channeling of electrons. Nuovo Cimento C 34, 157–165 (2011)

    Google Scholar 

  20. Backe, H., Lauth, W.: Channeling experiments with sub-GeV electrons in flat silicon single crystals. Nucl. Instrum. Meth. B 355, 24–29 (2015)

    Article  ADS  Google Scholar 

  21. Bandiera, L., Bagli, E., Germogli, G., Guidi, V., Mazzolari, A., Backe, H., Lauth, W., Berra, A., Lietti, D., Prest, M., De Salvador, D., Vallazza, E., Tikhomirov, V.: Investigation of the electromagnetic radiation emitted by sub-GeV electrons in a bent crystal. Phys. Rev. Lett. 115, 025504 (2015)

    Google Scholar 

  22. Sushko, G.B., Korol, A.V., Greiner, W., Solov’yov, A.V.: Sub-GeV electron and positron channeling in straight, bent and periodically bent silicon crystals. J. Phys. Conf. Ser. 438, 012018 (2013)

    Google Scholar 

  23. Backe, H., Krambrich, D., Lauth, W., Buonomo, B., Dabagov, S.B., Mazzitelli, G., Quintieri, L., Hansen, J.L., Uggerhøj, U.K.I., Azadegan, B., Dizdar, A., Wagner, W.: Future aspects of X-ray emission from crystal undulators at channeling of positrons. Nuovo Cimento C 34, 175 (2011)

    Google Scholar 

  24. Backe, H., Lauth, W., Kunz, P., Rueda, A., Esberg, J., Kirsebom, K., Hansen, J.L., Uggerhøj, U.K.I.: Photon emission of electrons in a crystalline undulator. In: Dabagov, S.B., Palumbo, L., Zichichi, A. (eds.) Proceedings of 51st Workshop Charged and Neutral Particles Channeling Phenomena Channeling 2008, Erice, Italy, Oct 2008, pp. 281–290. World Scientific, Singapore/Hackensack (2010)

    Google Scholar 

  25. Mikkelsen, U., Uggerhøj, E.: A crystalline undulator based on graded composition strained layers in a superlattice. Nucl. Instum. Meth. B 160, 435 (2000)

    Article  ADS  Google Scholar 

  26. Mao, F., Sushko, G.B., Korol, A.V., Solov’yov, A.V., Cheng, W., Sang, H., Zhang, F.-S.: Radiation by ultra-relativistic positrons and electrons channeling in periodically bent diamond crystals. Unpublished (2015)

    Google Scholar 

  27. Sushko, G.B.: Atomistic Molecular Dynamics Approach for Channeling of Charged Particles in Oriented Crystals (Doctoral dissertation), Goethe-Universität, Frankfurt am Main (2015)

    Google Scholar 

  28. https://www6.slac.stanford.edu/facilities/facet.aspx

  29. Korol, A.V., Solov’yov, A.V., Greiner, W.: The influence of the dechannelling process on the photon emission by an ultra-relativistic positron channelling in a periodically bent crystal. J. Phys. G: Nucl. Part. Phys. 27, 95–125 (2001)

    Article  ADS  Google Scholar 

  30. Korol, A.V., Bezchastnov, V.G., Solov’yov, A.V.: Channeling and radiation of the 855 MeV electrons enhanced by the re-channeling in a periodically bent diamond crystal. Eur. Phys. J. D 71, 174 (2017)

    Article  ADS  Google Scholar 

  31. Pavlov, A.V., Korol, A.V., Ivanov, V.K., Solov’yov, A.V.: Interplay and specific features of radiation mechanisms of electrons and positrons in crystalline undulators. J. Phys. B: At. Mol. Opt. Phys. 52, 11LT01 (2019)

    Google Scholar 

  32. Pavlov, A.V., Korol, A.V., Ivanov, V.K., Solov’yov, A.V.: Channeling of electrons and positrons in straight and periodically bent diamond(110) crystals. Eur. Phys. J. D 74, 21 (2020)

    Article  ADS  Google Scholar 

  33. Backe, H., Lauth, W.: Channeling experiments with electrons at the mainz microtron. In: 4th International Conference on “Dynamics of Systems on the Nanoscale” (Bad Ems, Germany, Oct. 3-7 2016) Book of Abstracts, p. 58 (2016)

    Google Scholar 

  34. Taratin, A.M., Vorobiev, S.A.: Volume reflection of high-energy charged particles in quasi-channeling states in bent crystals. Phys. Lett. 119, 425 (1987)

    Article  Google Scholar 

  35. Taratin, A.M., Vorobiev, S.A.: Deflection of high-energy charged particles in quasi-channeling states in bent crystals. Nucl. Instrum. Meth. B 26, 512 (1987)

    Article  ADS  Google Scholar 

  36. Shul’ga, N.F., Boyko, V.V., Esaulov, A.S.: New mechanism of jump formation in a spectrum of coherent radiation by relativistic electrons in the field of periodically deformed crystal planes of atoms. Phys. Lett. A 372, 2065–2068 (2008)

    Article  ADS  Google Scholar 

  37. Mazzolari, A., Bagli, E., Bandiera, L., Guidi, V., Backe, H., Lauth, W., Tikhomirov, V., Berra, A., Lietti, D., Prest, M., Vallazza, E., De Salvador, D.: Steering of a sub-GeV electron beam through planar channeling enhanced by rechanneling. Phys. Rev. Lett. 112, 135503 (2014)

    Google Scholar 

  38. Nielsen, C.F., Uggerhøj, U.I., Holtzapple, R., Markiewicz, T.W., Benson, B.C., Bagli, E., Bandiera, L., Guidi, V., Mazzolari, A., Wienands, U.: Photon emission by volume reflected electrons in bent crystals. Phys. Rev. Acc. Beams 22, 114701 (2019)

    Google Scholar 

  39. Tran Thi, T.N., Morse, J., Caliste, D., Fernandez, B., Eon, D., Härtwig, J., Barbay, C., Mer-Calfati, C., Tranchant, N., Arnault, J.C., Lafford, T.A., Baruchel, J.: Synchrotron Bragg diffraction imaging characterization of synthetic diamond crystals for optical and electronic power device applications. J. Appl. Cryst. 50, 561 (2017)

    Google Scholar 

  40. de la Mata, B.G., Sanz-Hervás, A., Dowsett, M.G., Schwitters, M., Twitchen, D.: Calibration of boron concentration in CVD single crystal diamond combining ultralow energy secondary ions mass spectrometry and high resolution X-ray diffraction. Diam. Rel. Mat. 16, 809 (2007)

    Article  Google Scholar 

  41. Uggerhøj, U.I.: The interaction of relativistic particles with strong crystalline fields. Rev. Mod. Phys. 77, 1131–1171 (2005)

    Article  ADS  Google Scholar 

  42. Boshoff, D., Copeland, M., Haffejee, F., Kilbourn, Q., Mercer, C., Osatov, A., Williamson, C., Sihoyiya, P., Motsoai, M., Henning, C.A., Connell, S.H., Brooks, T., Härtwig, J., Tran Thi, T.N., Palmer, N., Uggerhøj, U.: The search for diamond crystal undulator radiation. In: 4th International Conference “Dynamics of Systems on the Nanoscale” (Bad Ems, Germany, Oct. 3-7 2016) Book of Abstracts, p. 38 (2016)

    Google Scholar 

  43. Pavlov, A., Korol, A., Ivanov, V, Solov’yov, A.: Channeling and radiation of electrons and positrons in diamond hetero-crystals (2021). arXiv:2004.07043

  44. Backe, H., Krambrich, D., Lauth, W., Andersen, K.K., Hansen, J., Lundsgaard, and Uggerhøj, U.I.: Channeling and radiation of electrons in silicon single crystals and si1- xGex crystalline undulators. J. Phys. Conf. Ser. 438, 012017 (2013)

    Google Scholar 

  45. Backe, H., Lauth, W., Tran Thi, T.N.: Channeling experiments at planar diamond and silicon single crystals with electrons from the Mainz Microtron MAMI. J. Instrum. (JINST) 13, C04022 (2018)

    Google Scholar 

  46. Si111-qm-general2-60.sh The DA\(\Phi \)NE Beam-Test Facility. http://www.lnf.infn.it/acceleratori/btf/

  47. Kostyuk, A.: Crystalline undulator with a small amplitude and a short period. Phys. Rev. Lett. 110, 115503 (2013)

    Google Scholar 

  48. Korol, A.V., Bezchastnov, V.G., Sushko, G.B., Solov’yov, A.V.: Simulation of channeling and radiation of 855 MeV electrons and positrons in a small-amplitude short-period bent crystal. Nucl. Instrum. Meth. B 387, 41–53 (2016)

    Article  ADS  Google Scholar 

  49. Wistisen, T.N., Andersen, K.K., Yilmaz, S., Mikkelsen, R., Hansen, J.L., Uggerhøj, U.I., Lauth, W., Backe, H.: Experimental realization of a new type of crystalline undulator. Phys. Rev. Lett. 112, 254801 (2014)

    Google Scholar 

  50. Uggerhøj, U.I., Wistisen, T.N.: Intense and energetic radiation from crystalline undulators. Nucl. Instrum Meth. B 355, 35 (2015)

    Article  ADS  Google Scholar 

  51. Uggerhoj, U.I., Wistisen, T.N., Hansen, J.L., Lauth, W., Klag, P.: Radiation collimation in a thick crystalline undulator. Eur. J. Phys. D 71, 124 (2017)

    Article  ADS  Google Scholar 

  52. Wienands, U., Gessner, S., Hogan, M.J., Markiewicz, T.W., Smith, T., Sheppard, J., Uggerhøj, U.I., Hansen, J.L., Wistisen, T.N., Bagli, E., Bandiera, L., Germogli, G., Mazzolari, A., Guidi, V., Sytov, A., Holtzapple, R.L., McArdle, K., Tucker, S., Benson, B.: Channeling and radiation experiments at SLAC. Nucl. Instrum Meth. B 402, 11 (2017)

    Article  ADS  Google Scholar 

  53. Medvedev, M.V.: Theory of “jitter’’ radiation from small-scale random magnetic fields and prompt emission from gamma-ray burst shocks. Astrophys. J. 540, 704–714 (2000)

    Article  ADS  Google Scholar 

  54. Kellner, S.R., Aharonian, F.A., Khangulyan, D.: On the jitter radiation. Astrophys. J. 774, 61 (2013)

    Article  ADS  Google Scholar 

  55. Korol, A.V., Sushko, G.B., Solov’yov, A.V.: All-atom relativistic molecular dynamics simulations of channeling and radiation processes in oriented crystals. Eur. Phys. J. D 75, 107 (2021)

    Article  ADS  Google Scholar 

  56. Sushko, G.B., Korol, A.V., Solov’yov, A.V.: Unpublished (2016)

    Google Scholar 

  57. Sushko, G.B., Korol, A.V., Solov’yov, A.V.: A small-amplitude crystalline undulator based on 20 GeV electrons and positrons: Simulations. St. Petersburg Polytechnical Uni. J.: Phys. Math. 1, 341 (2015)

    Google Scholar 

  58. Federici, L., Giordano, G., Matone, G., Pasquariello, G., Picozza, P., et al.: The LADON photon beam with the ESRF 5 GeV machine. Lett. Nuovo Cimento 27, 339 (1980)

    Article  Google Scholar 

  59. ur Rehman, H., Lee, J., Kim, Y.: Optimization of the laser-Compton scattering spectrum for the transmutation of high-toxicity and long-living nuclear waste. Ann. Nucl. Energy 105, 150 (2017)

    Google Scholar 

  60. Krämer, J.M., Jochmann, A., Budde, M., Bussmann, M., Couperus, J.P., et al.: Making spectral shape measurements in inverse Compton scattering a tool for advanced diagnostic applications. Sci. Rep. 8, 139 (2018)

    Article  Google Scholar 

  61. Xenon beams light path to gamma factory. CERN Courier (13 October 2017). https://cerncourier.com/xenon-beams-light-path-to-gamma-factory/

  62. Krasny, M.W.: The Gamma Factory proposal for CERN (2015). arXiv:1511.07794

  63. Krasny, M.W., Martens, A., Dutheil, Y.: Gamma factory proof-of-principle experiment: Letter of intent. CERN-SPSC-2019-031/SPSC-I-253, 25/09/2019 http://cds.cern.ch/record/2690736/files/SPSC-I-253.pdf

  64. Korol, A.V., Solov’yov, A.V., Greiner, W.: Number of photons and brilliance of the radiation from a crystalline undulator. Proc. SPIE 5974, 597405 (2005)

    Google Scholar 

  65. Kim, K.-J.: Characteristics of synchrotron radiation. In: X-ray Data Booklet, pp. 2.1–2.16. Lawrence Berkeley Laboratory, Berkley (2009). http://xdb.lbl.gov/xdb-new.pdf

  66. Kostyuk, A., Korol, A.V., Solov’yov, A.V., Greiner, W.: Demodulation of a positron beam in a bent crystal channel. Nucl. Instrum. Method B 269, 1482–1492 (2011)

    Google Scholar 

  67. Sytov, A.I., Bandiera, L., De Salvador, D., Mazzolari, A., Bagli, E., Berra, A., Carturan, S., Durighello, C., Germogli, G., Guidi, V., Klag, P., Lauth, W., Maggioni, G., Prest, P., Romagnoni, M., Tikhomirov, V.V., Vallazza, E.: Steering of Sub-GeV electrons by ultrashort Si and Ge bent crystals. Eur. Phys. J. C 77, 901 (2017)

    ADS  Google Scholar 

  68. Hubbel, J.H., Seltzer, S.M.: Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients from 1 keV to 20 MeV for elements Z \(=\) 1 to 92 and 48 additional substances of dosimetric interest. NISTIR 5632. Web version http://www.nist.gov/pml/data/xraycoef/index.cfm

  69. Wienands, U., Markiewicz, T.W., Nelson, J., Noble, R.J., Turner, J.L., Uggerhøj, U.I., Wistisen, T.N., Bagli, E., Bandiera, L., Germogli, G., Guidi, V., Mazzolari, A., Holtzapple, R., Miller, M.: Observation of deflection of a beam of multi-GeV electrons by a thin crystal. Phys. Rev. Let. 114, 074801 (2015)

    Google Scholar 

  70. Sushko, G.B., Bezchastnov, V.G., Solov’yov, I.A., Korol, A.V., Greiner, W., Solov’yov, A.V.: Simulation of ultra-relativistic electrons and positrons channeling in crystals with MBN Explorer. J. Comp. Phys. 252, 404 (2013)

    Article  ADS  Google Scholar 

  71. Solov’yov, I.A., Korol, A.V., Solov’yov, A.V.: Multiscale Modeling of Complex Molecular Structure and Dynamics with MBN Explorer. Springer International Publishing, Cham, Switzerland (2017)

    Google Scholar 

  72. Biryukov, V.M., Chesnokov, Yu.A., Kotov, V.I.: Crystal Channeling and Its Application at High-Energy Accelerators. Springer, Berlin/Heidelberg (1996)

    Google Scholar 

  73. Ayvazyan, V., Baboi, N., Bohnet, I., Brinkmann, R., Castellano, M., et al.: A new powerful source for coherent VUV radiation: demonstration of exponential growth and saturation at the TTF free-electron laser. Europ. Phys. J. D 20, 149 (2002)

    Article  ADS  Google Scholar 

  74. SchmĂĽser, P., Dohlus, M., Rossbach, J.: Ultraviolet and Soft X-Ray Free-Electron Lasers. Springer, Berlin/Heidelberg (2008)

    Google Scholar 

  75. Krasny, M.W.: The Gamma Factory proposal for CERN. Photon-2017 Conference, May 22-29, 2017 8CERN, Geneva

    Google Scholar 

  76. Sushko, G.B., Korol, A.V., Solov’yov, A.V.: Extremely brilliant crystal-based light sources. In preparation (2021)

    Google Scholar 

  77. SLAC Site Office: Preliminary Conceptual Design Report for the FACET-II Project at SLAC National Accelerator Laboratory. Report SLAC-R-1067, SLAC (2015)

    Google Scholar 

  78. Gemmell, D.S.: Channeling and related effects in the motion of charged particles through crystals. Rev. Mod. Phys. 46, 129–227 (1974)

    Article  ADS  Google Scholar 

  79. Baier, V.N., Katkov, V.M., Strakhovenko, V.M.: Electromagnetic Processes at High Energies in Oriented Single Crystals. World Scientific, Singapore (1998)

    Google Scholar 

  80. Doyle, P.A., Turner, P.S.: Relativistic Hartree-Fock X-ray and electron scattering factor. Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. A 24, 390–397 (1968)

    Google Scholar 

  81. Pacios, L.F.: Analytical density-dependent representation of Hartree-Fock atomic potentials. J. Comp. Chem. 14, 410–421 (1993)

    Article  Google Scholar 

  82. Dedkov, G.V.: Interatomic potentials of interactions in radiation physics Sov. Phys. - Uspekhi 38, 877–910 (1995)

    Article  ADS  Google Scholar 

  83. Chouffani, K., Überall, H.: Theory of low energy channeling radiation: application to a Germanium crystal. Phys. Status Sol. (b) 213, 107–151 (1999)

    Article  ADS  Google Scholar 

  84. Landau, L.D., Lifshitz, E.M.: Course of Theoretical Physics, vol. 1. Mechanics. Elsevier, Oxford (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Korol .

Appendix: Continuous Potential and Transverse Motion in a SASP Crystal

Appendix: Continuous Potential and Transverse Motion in a SASP Crystal

In this supplementary section, explicit formulae are derived that describe non-periodic and periodic parts of the continuous planar potential in a SASP bent crystal. The analytical and numerical analysis of the results obtained allow us to qualitatively explain the peculiar features in the motion of ultra-relativistic projectiles as well as in the radiative spectra. 

6.1.1 Continuous Potential

Consider a crystallographic plane which coincides with the (xz) Cartesian plane. For the sake of clarity, let us introduce a cosine periodic bending, \(a\cos ({k_{\mathrm{u}}}z)\) with \({k_{\mathrm{u}}}=2\pi /\lambda _{\mathrm{u}}\), of the plane in the transverse y direction. The bending amplitude a and period \(\lambda _{\mathrm{u}}\) satisfy the SASP bending condition

$$\begin{aligned} a < d \ll \lambda _{\mathrm{u}}, \end{aligned}$$
(6.11)

where d stands for the interplanar distance.

Similar to the procedure used for a straight plane (see Sect. 4.5.3), the continuous potential of a periodically bent plane one obtains summing up the potentials of individual atoms assuming that the latter is distributed uniformly along the plane:

$$\begin{aligned} \mathcal{U}_{\mathrm{pl}}(y,z) = \mathcal{N}\int w(\varDelta )\, \mathrm{d}\boldsymbol{\varDelta } \int \limits _{-\infty }^{\infty } \mathrm{d}z^{\prime } \int \limits _{-\infty }^{\infty } \mathrm{d}x^{\prime } \, U_{\mathrm{at}}(|\mathbf{r}-\boldsymbol{\varDelta } |)\,. \end{aligned}$$
(6.12)

Vector \(\boldsymbol{\varDelta } \) stands for the displacement of an atom from its equilibrium position, characterized by the coordinates \((x^{\prime }, y^{\prime }, z^{\prime })\) with with \(y^{\prime }=a\cos {k_{\mathrm{u}}}z^{\prime }\) (see illustrative Fig. 6.25) due to thermal vibrations.

Fig. 6.25
figure 25

Supplementary figure illustrating the derivation of the continuous potential of a periodically bent crystallographic plane (the thick curve represents the bending profile). The atoms are displaced randomly from their equilibrium positions \((x^{\prime },y^{\prime },z^{\prime })\) due to to thermal vibrations (the vector \(\boldsymbol{\varDelta } \) shows the position of a displaced atom “A”)

Expressing \(U_{\mathrm{at}}\) in terms of its Fourier transform and using (4.28) one integrates over \(x^{\prime }, z^{\prime }, \boldsymbol{\varDelta } \) and presents the planar potential in the form of a series:

$$\begin{aligned} \mathcal{U}_{\mathrm{pl}}(y,z)&= V_0(y; a) + \sum _{n=1}^{\infty } \cos (n{k_{\mathrm{u}}}z)\, V_n(y;a) \end{aligned}$$
(6.13)

with

$$\begin{aligned} V_0(y;a)&= {\mathcal{N}\over \pi } \int \limits _{0}^{\infty } \mathrm{d}q \, \mathrm{e}^{-{q^2u_T^2 \over 2}}\, \cos (q y) \,J_0(q a) \widetilde{U}_{\mathrm{at}}(q) \end{aligned}$$
(6.14)
$$\begin{aligned} V_n(y;a) = {2 \mathcal{N}\over \pi } \int \limits _{0}^{\infty } \mathrm{d}q \, \mathrm{e}^{-{Q_n^2 u_T^2 \over 2}} J_n(q a)\, \widetilde{U}_{\mathrm{at}}\left( Q_n\right) \times \left\{ \begin{array}{l} \displaystyle (-1)^{n\over 2} \cos (q y)\\ \displaystyle (-1)^{n-1\over 2} \sin (q y) \end{array} \right. \end{aligned}$$
(6.15)

where the short-hand notation \(Q_n^2=q^2 + (n{k_{\mathrm{u}}})^2\) is used. The upper line stands for even n values, the lower line—for the odd ones.

In the limit of a straight channel, \(a=0\), the right-hand side of Eq. (6.13) reduces to that in (4.49). Indeed, taking into account that \(J_0(0)=0\) and \(J_n(0)=0\) for \(n>0\), one notices that this leads to \(V_{n}(y;0)\equiv 0\) for all terms defined by (6.15) whereas the term \(V_{0}(y;0)\), Eq. (6.14), reduces to (6.13).

To determine the interplanar potential U(y, z), one uses Eq. (4.54) where the potentials \(\mathcal{U}_{\mathrm{pl}}(y,z)\) of individual planes are to be inserted.

The integrals on the right-hand sides of Eqs. (6.14) and (6.15) can be evaluated explicitly for a number of analytic approximations for \(U_{\mathrm{at}}\) which can be found in literature [9, 78,79,80,81,82,83]. For reference purposes, we present the explicit formulae derived within the framework of the Molière approximation (4.43):

$$\begin{aligned} V_n(y;a)&= (1+\delta _{n0}) \mathcal{N}Z e \sum _{i=1}^3 {\alpha _j \over \varGamma _{nj}}\, \mathrm{e}^{\gamma _{j}^2 u_T^2\over 2} \, \mathcal{T}_n(y;a,\varGamma _{nj}) \end{aligned}$$
(6.16)

Here \(\delta _{n0}\) is the Kronecker symbol, \(\varGamma _{nj}=\left( \gamma _j^2+(n{k_{\mathrm{u}}})^2\right) ^{1/2}\), \(\mathcal{T}_n\) stands for the integral:

$$\begin{aligned} \mathcal{T}_n(y;a,\varGamma ) = \int \limits _0^{\pi /2} \mathrm{d}\theta \cos (n\theta ) \Bigl ( \mathcal{F}(y - a \cos \theta ;\varGamma ) + (-1)^n \mathcal{F}(y + a \cos \theta ;\varGamma ) \Bigr ) \end{aligned}$$
(6.17)

where

$$\begin{aligned} \mathcal{F}(Y;\varGamma ,u_T) = F(Y; \varGamma ,u_T) + F(-Y; \varGamma ,u_T) \end{aligned}$$
(6.18)

with \(F(\pm Y; \varGamma ,u_T)\) defined as in (4.51).

For \(n=0\), Eq. (6.16) reproduces the expression derived in Ref. [48].

Similar to the case of a straight crystal, the interplanar potential U(y, z) in a SASP bent crystal is obtained by summing up the potentials (6.13) of individual planes. For the electron channel, the result can be written in the form

$$\begin{aligned} U(y,z) = \sum _{n=0}^{\infty } \cos (n{k_{\mathrm{u}}}z)\, U_n(y) \end{aligned}$$
(6.19)

where

$$\begin{aligned} U_n(y) = V_n(y) + \sum _{k=1}^{K_{\max }} \Bigl ( V_n(y+kd) + V_n(y-kd) \Bigr ) + C_n\,. \end{aligned}$$
(6.20)

Here, y is the transverse coordinate with respect to an arbitrary selected reference plane, and the sum describes a balanced contribution from the neighboring planes. The constants \(C_n\) can be chosen to satisfy the condition \(U_n(0)=0\).

For positrons, the interplanar potential can be obtained from Eq. (6.20) by reversing the signs of the planar potentials and selecting the constants \(C_n\) to ensure \(V_n(\pm d/2)=0\). Similar summation schemes allow one to calculate the charge densities, nuclear and electronic, across the periodically bent channels.

6.1.2 Transverse Motion in a SASP Channel

The function y(t) describes the transverse motion of a particle with respect to the centerline of the channel. The equation of motion (EM) reads

$$\begin{aligned} \ddot{y} = - {1 \over m \gamma }\, {\partial U(y,z) \over \partial y}\,. \end{aligned}$$
(6.21)

In what follows we outline a perturbative solution of the EM.

Assuming the longitudinal coordinate z changes linearly with time, \(z\approx ct\), one re-writes the potential (6.19) substituting z with ct. Then, the EM is written as follows:

$$\begin{aligned} \ddot{y} = {1 \over m \gamma } \left( f_0(y) + \sum _{n=1}^{\infty } \cos (n{\varOmega _{\mathrm{u}}}t)\, f_n(y) \right) \end{aligned}$$
(6.22)

with

$$\begin{aligned} {\varOmega _{\mathrm{u}}}= {k_{\mathrm{u}}}c = {2\pi c \over \lambda _{\mathrm{u}}}, \quad f_{0}(y) = - {\mathrm{d}U_{0} \over \mathrm{d}y}, \quad f_{n}(y) = - {\mathrm{d}U_{n} \over \mathrm{d}y}\,. \end{aligned}$$
(6.23)

The action of the time-independent force \(f_{0}\) results in the channeling oscillations. At the same time, the projectile experiences local small-amplitude oscillations (the jitter-like motion) due to the driving forces \(f_{n}\cos (n{\varOmega _{\mathrm{u}}}t)\) (\(n=1,2,\dots \)). In a SASP channel, the frequency \({\varOmega _{\mathrm{u}}}\) (and, respectively, its higher harmonics \(n{\varOmega _{\mathrm{u}}}\)) exceeds greatly the frequency of the channeling oscillations: \({\varOmega _{\mathrm{u}}}\gg \varOmega _{\mathrm{ch}}\). As a result, the EM (6.22) can be integrated following the perturbative procedure outlined in Ref. [84], Sect. 30, for the motion in a rapidly oscillating field. Namely, y(t) is represented as a sum

$$\begin{aligned} y(t) = Y(t) + \varXi (t) \end{aligned}$$
(6.24)

where \(\varXi (t)\) stands for a small (but rapidly oscillating) correction to the smooth dependence Y(t) which describes the channeling oscillations. The function \(\varXi (t)\) satisfies the equation in which the coordinate Y is treated as a parameter:

$$\begin{aligned} \ddot{\varXi } = \sum _{n=1}^{\infty } \cos (n{\varOmega _{\mathrm{u}}}t)\, {f_n(Y)\over m \gamma }\,. \end{aligned}$$
(6.25)

Its solution reads

$$\begin{aligned} \varXi (t, Y) = \sum _{n=1}^{\infty } \xi _n(Y) \cos (n {\varOmega _{\mathrm{u}}}t)\,. \end{aligned}$$
(6.26)

where

$$\begin{aligned} \xi _n(Y) = - {1 \over m \gamma \varOmega _{\mathrm{u}}^2} {f_n(Y) \over n^2} \end{aligned}$$
(6.27)

The presence of the term \(\varXi (t, Y)\) modifies the EM for Y(t). In addition to the force \(f_0=-\mathrm{d}U_0(Y)/\mathrm{d}Y\) due to the static potential, a ponderomotive force \(f_{\mathrm{pond}}\) appears. It can be calculated as follows [84] (below, the overline denotes averaging over the period \(2\pi /{\varOmega _{\mathrm{u}}}\) which is much smaller than the characteristic time of the channeling motion and, thus, does not affect the value of Y(t)):

$$\begin{aligned} f_{\mathrm{pond}}(Y)&= \overline{ \varXi (t, Y) \sum _{n=1}^{\infty } \cos (n{\varOmega _{\mathrm{u}}}t)\, {\mathrm{d}f_n(Y) \over \mathrm{d}Y} } = - {\mathrm{d}U_{\mathrm{pond}}\over \mathrm{d}Y} \end{aligned}$$
(6.28)

The ponderomotive potential, \(U_{\mathrm{pond}}\), introduced here is defined as follows:

$$\begin{aligned} U_{\mathrm{pond}}(Y) = {\lambda _{\mathrm{u}}^2 \over 16\pi ^2 \varepsilon } \sum _{n=1}^{\infty } {f_n^2(Y) \over n^2} \end{aligned}$$
(6.29)

Note that the ponderomotive correction to the potential becomes smaller as the energy increases since \(U_{\mathrm{pond}}\propto 1/\varepsilon \).

Therefore, the channeling oscillations \(Y=Y(t)\) are described by the EM

$$\begin{aligned} \ddot{Y} = - {1 \over m \gamma } {\mathrm{d}U_{\mathrm{eff}} \over \mathrm{d}Y} \end{aligned}$$
(6.30)

where the total effective potential reads

$$\begin{aligned} U_{\mathrm{eff}}(Y) = U_0(Y) + U_{\mathrm{pond}}(Y)\,. \end{aligned}$$
(6.31)

The non-periodic potential \(U_0\) and the ponderomotive term \(U_{\mathrm{pond}}\) calculated within the Molière approximation for positron SASP Si(110) channel are presented in Fig. 6.26. The curves correspond to different bending amplitude as indicated. The right panel shows the dependence of the product \(\varepsilon U_{\mathrm{pond}}\) (with \(\varepsilon \) measured in GeV) which is independent on the projectile energy. In both panels, the vertical lines mark the (110)-planes in the straight crystal. 

The modification of \(U_0\) with increase of the bending amplitude is clearly seen on the left panel in Fig. 6.26. In detail, this issue was discussed in Ref. [48]. Here, for the sake of consistency, we mention several features relevant to the topic of the current paper. For small and moderate amplitude values, \(a \le 0.4\) Å, the major change in the potential is the decrease of the interplanar potential barrier. As the a values approach the \(0.4 \dots 0.6\) Å range, the volume density of atoms becomes more friable leading to flattening of the potential maximum. For larger amplitudes, the potential changes in a more dramatic way as additional potential well appears. In the figure, this feature is clearly seen in the behavior of the the \(U_0\) curve for \(a=0.8\) Å: in addition to the “regular” channels centered at the midplanes, i.e., at \(y/d=\dots , -1,0,1,\dots \), “complementary” channels appear centered at \(y/d=\dots , -0.5, 0.5, \dots \). As a result, a positron can experience channeling oscillations moving in the channels of the two different types. Similar feature characterizes the electron channeling phenomenon at sufficiently large values of bending amplitude [48].

Fig. 6.26
figure 26

Left. The non-periodic part \(U_0(y)\) of the continuous interplanar potential for positrons in Si(110) calculated at different values of bending amplitude indicated in Å near the curves (\(a=0\) stands for the straight crystal). Right. The ponderomotive correction \(U_{\mathrm{pond}}\) multiplied by \(\varepsilon \) in GeV calculated for various a and for fixed bending period \(\lambda _{\mathrm{u}}=308\) microns. The potentials shown are evaluated for temperature 300 K by using the Molière atomic potentials. The vertical dashed lines mark the adjacent (110) planes in straight crystal (the interplanar spacing is \(d=1.92\) Å)

Fig. 6.27
figure 27

The effective interplanar potential \(U_{\mathrm{eff}}\), Eq. (6.31), (solid lines) for a 250 MeV positron in Si(110) at different values of bending amplitude indicated in Ă… near the curves (\(a=0\) stands for the straight crystal). The dashed curves show the continuous potential \(U_{\mathrm{0}}\) without the ponderomotive corrections. The bending period is \(\lambda _{\mathrm{u}}=308\) microns

Comparing the absolute values of the ponderomotive term \(U_{\mathrm{pond}}\) (curves in the right panel of Fig. 6.26 correspond to the terms at \(\varepsilon =1\) GeV) and those of \(U_0\) one can state that for all bending amplitudes \(U_{\mathrm{pond}}\) is a negligibly small correction to \(U_0\) for the projectile energies above 1 GeV. For much lower energies, say for a few hundreds-MeV, the contribution of \(U_{\mathrm{pond}}\) becomes more noticeable, reaching the eV range in the regions \(2|y|/d \approx \dots , -1,0,1,\dots \). Thus, it should be accounted if an accurate integration of the EM (6.30) is desired. Figure 6.27 illustrates the change in the continuous interplanar Si(110) potential due to the ponderomotive correction. Solid curves who the corrected potentials, the dashed ones—the term \(U_0\). The data refer to 250 MeV positron channeling in Si(110) bent periodically with the period \(\lambda _{\mathrm{u}}=308\) microns; the values of bending amplitude (in Å) are indicated in the figure.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Korol, A., Solov’yov, A.V. (2022). Crystalline Undulators. In: Novel Lights Sources Beyond Free Electron Lasers. Particle Acceleration and Detection. Springer, Cham. https://doi.org/10.1007/978-3-031-04282-9_6

Download citation

Publish with us

Policies and ethics