Skip to main content

Wind Prediction Using Deep Learning and High Performance Computing

  • Conference paper
  • First Online:
High Performance Computing (CARLA 2021)

Abstract

Deep Learning Convolutional Neural Networks have been successfully used in many applications. Its versatility lies in reducing the number of parameters to train while maintaining or improving the feature representation capabilities offered by other architectures. Due to its success, Convolutional Networks have become the architecture of choice for image and video processing applications. The application of Convolutional Networks to wind time series is still limited, being an area with high potential for developing new approaches. This paper explores several deep learning models and applies them to wind time series for multi-step forecasting. The time series used for the experimentation are multidimensional time-stamped multi-variate meteorological data. We use a large dataset of wind data from the National Renewable Laboratory with 126,692 wind sites, requiring the use of High Performance Computing. The experimentation results show how Convolutional Networks are a valid approach for wind time series forecasting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ben Taieb, S., Bontempi, G., Atiya, A., Sorjamaa, A.: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition. arXiv e-prints arXiv:1108.3259, August 2011

  2. Ben Taieb, S., Sorjamaa, A., Bontempi, G.: Multiple-output modeling for multi-step-ahead time series forecasting. Neurocomputing 73(10–12), 1950–1957 (2010). https://doi.org/10.1016/j.neucom.2009.11.030

    Article  Google Scholar 

  3. Bengio, Y., Roux, N.L., Vincent, P., Delalleau, O., Marcotte, P.: Convex neural networks. In: Weiss, Y., Schölkopf, B., Platt, J.C. (eds.) Advances in Neural Information Processing Systems 18, pp. 123–130. MIT Press, Cambridge (2006)

    Google Scholar 

  4. Bontempi, G.: Long term time series prediction with multi-input multi-output local learning. In: Proceedings of the 2nd European Symposium on Time Series Prediction (TSP), ESTSP 2008, January 2008

    Google Scholar 

  5. Cao, Q., Ewing, B.T., Thompson, M.A.: Forecasting wind speed with recurrent neural networks. Eur. J. Oper. Res. 221(1), 148–154 (2012). https://doi.org/10.1016/j.ejor.2012.02.042

    Article  MathSciNet  MATH  Google Scholar 

  6. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. CoRR abs/1610.02357 (2016). http://arxiv.org/abs/1610.02357

  7. Díaz, D., Torres, A., Dorronsoro, J.R.: Deep neural networks for wind energy prediction. In: Rojas, I., Joya, G., Català, A. (eds.) Advances in Computational Intelligence, pp. 430–443. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19258-1_36

    Chapter  Google Scholar 

  8. Draxl, C., Clifton, A., Hodge, B.M., McCaa, J.: The wind integration national dataset (wind) toolkit. Appl. Energy 151, 355–366 (2015)

    Article  Google Scholar 

  9. Elliott, D., Holladay, C., Barchet, W., Foote, H., Sandusky, W.: Wind energy resource atlas of the united states, March 1987. (editor: NREL). https://rredc.nrel.gov/wind/pubs/atlas/

  10. Fei-Fei, L., Deng, J., Li, K.: Constructing a large-scale image database. J. Vision 9(8), 1037 (2009). https://doi.org/10.1167/9.8.1037

    Article  Google Scholar 

  11. Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4), 367–378 (2002). https://doi.org/10.1016/S0167-9473(01)00065-2

    Article  MathSciNet  MATH  Google Scholar 

  12. Giebel, G., Brownsword, R., Kariniotakis, G., Denhard, M., Draxl, C.: The State-Of-The-Art in Short-Term Prediction of Wind Power: A Literature Overview, 2nd edn. ANEMOS.plus (2011). https://doi.org/10.11581/DTU:00000017. (Project funded by the European Commission under the 6th Framework Program, Priority 6.1: Sustainable Energy Systems)

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, June 2016. https://doi.org/10.1109/CVPR.2016.90

  14. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) Learning and Intelligent Optimization, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25566-3_40

    Chapter  Google Scholar 

  15. Khodayar, M., Kaynak, O., Khodayar, M.E.: Rough deep neural architecture for short-term wind speed forecasting. IEEE Trans. Indust. Inform. 13(6), 2770–2779 (2017). https://doi.org/10.1109/TII.2017.2730846

    Article  Google Scholar 

  16. Kline, D.: Methods for multi-step time series forecasting with neural networks, chap. 12, pp. 226–250. Information Science Publishing, January 2004. https://doi.org/10.4018/978-1-59140-176-6.ch012

  17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates Inc., New York (2012)

    Google Scholar 

  18. Landberg, L.: Meteorology for Wind Energy. Wiley, Hoboken (2015). https://doi.org/10.1002/9781118913451

    Book  Google Scholar 

  19. Le Cun, Y., Jackel, L.D., Boser, B., Denker, J.S., Graf, H.P., Guyon, I., Henderson, D., Howard, R.E., Hubbard, W.: Handwritten digit recognition: applications of neural network chips and automatic learning. IEEE Commun. Mag. 27(11), 41–46 (1989). https://doi.org/10.1109/35.41400

    Article  Google Scholar 

  20. LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time-series. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks, pp. 1–14. MIT Press, Cambridge (1995)

    Google Scholar 

  21. Liu, Z., Gao, W., Wan, Y.H., Muljadi, E.: Wind power plant prediction by using neural networks. In: IEEE Energy Conversion Congress and Exposition (ECCE), pp. 3154–3160, September 2012. https://doi.org/10.1109/ECCE.2012.6342351

  22. Manero, J., Béjar, J., Cortés, U.: “Dust in the wind...”, deep learning application to wind energy time series forecasting. Energies 12(12), 2385 (2019). https://doi.org/10.3390/en12122385

  23. Martorell, J.M.: Barcelona supercomputing center: science accelerator and producer of innovation. Contrib. Sci. 12(1), 5–11 (2016). https://doi.org/10.2436/20.7010.01.238

    Article  Google Scholar 

  24. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings, pp. 1–14 (2015), http://arxiv.org/abs/1409.1556

  25. Szegedy, C., et al.: Going deeper with convolutions. CoRR abs/1409.4842 (2014). http://arxiv.org/abs/1409.4842

  26. Taieb, S.B., Atiya, A.F.: A bias and variance analysis for multistep-ahead time series forecasting. IEEE Trans. Neural Netw. Learn. Syst, 27(1), 62–76 (2016)

    Article  MathSciNet  Google Scholar 

  27. Venkatraman, A., Hebert, M., Bagnell, J.A.: Improving multi-step prediction of learned time series models. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pp. 3024–3030. AAAI 2015, AAAI Press (2015)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Barcelona Supercomputing Center (BSC) for the usage of their resources and the United States National Renewable Laboratory (NREL) for the use of its Wind Toolkit (wind datasets). We would also like to thank the anonymous reviewers for providing valuable comments that helped to improve the quality of this paper. Prof. U. Cortés is a member of the Sistema Nacional de Investigadores (level III) (CONACyT-Mexico).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaume Manero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Manero, J., Béjar, J., Cortés, U. (2022). Wind Prediction Using Deep Learning and High Performance Computing. In: Gitler, I., Barrios Hernández, C.J., Meneses, E. (eds) High Performance Computing. CARLA 2021. Communications in Computer and Information Science, vol 1540. Springer, Cham. https://doi.org/10.1007/978-3-031-04209-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04209-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04208-9

  • Online ISBN: 978-3-031-04209-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics