Skip to main content

Phenolic Composition of Honeybush and Changes During Herbal Tea and Extract Production

  • Living reference work entry
  • First Online:
Natural Products in Beverages

Abstract

Several Cyclopia species, including C. intermedia, C. subternata, and C. genistoides, are used to make honeybush tea. All species belonging to this genus (Family: Fabaceae) are endemic to the Cape Floristic region of South Africa. The various species differ in terms of their phenolic profiles, but mangiferin, isomangiferin, and hesperidin are ubiquitous to Cyclopia species. The use of conventional honeybush tea, which requires high-temperature oxidation for its characteristic aroma, flavor, and color development, predates 1900, but research on propagation, cultivation, plant breeding, processing, and product development began only in the mid-1990s. While high-temperature oxidation is integral to the production of conventional honeybush tea, this step substantially reduces the phenolic content of the plant material. The compounds are affected to varying degrees, and several, including the xanthone, mangiferin, and the dihydrochalcone, 3′,5′-di-β-D-glucopyranosyl-3-hydroxyphloretin, are very labile. Chemical reactions during heating of the plant material or extracts include cyclization, dimerization, isomerization, and epimerization, depending on the phenolic compound. Their degradation during the production of conventional honeybush tea prompted the development of green honeybush to provide the market with a tea containing significantly higher levels of phenolic compounds. The main topics of this chapter are the preparation of phenolic-rich extracts from green honeybush and the quantitative changes in phenolic composition with processing and storage of the tea and its value-added products. These include spray-dried extract powder as a food ingredient, as well as “instant” powders and ready-to-drink beverages as final consumer products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

2RNAR:

(2R)-5-neohesperidosylnaringenin

2SNAR:

(2S)-5-neohesperidosylnaringenin

BEF:

Benzophenone-Enriched Fraction

HPDG:

3′,5′-di-β-D-glucopyranosyl-3-hydroxyphloretin

HPLC-DAD:

High-Performance Liquid Chromatography with Diode-Array Detection

IDG:

3-β-D-glucopyranosyl-4-O-β-D-glucopyranosyliriflophenone

IMG:

3-β-D-glucopyranosyliriflophenone

MARC:

Macroporous Adsorption Resin Chromatography

MMG:

3-β-D-glucopyranosylmaclurin

MS:

Mass Spectrometry

PDG:

3′,5′-di-β-D-glucopyranosylphloretin

RTD:

Ready-To-Drink

XEF:

Xanthone-Enriched Fraction

References

  1. Van Wyk BE, Gorelik B (2017) The history and ethnobotany of Cape herbal teas. S Afr J Bot 110:18–38. https://doi.org/10.1016/j.sajb.2016.11.011

    Article  CAS  Google Scholar 

  2. Marloth R (1925) The flora of South Africa with synoptical tables of the genera of the higher plants. Darter Bros, Cape Town

    Google Scholar 

  3. Marloth R (1913) The chemistry of South African plants and plant products. Cape Chemical Society, Cape Town

    Google Scholar 

  4. Watt JM, Breyer-Brandwijk MG (1962) Medicinal and poisonous plants of southern and eastern Africa. E and S Livingstone, Edinburgh

    Google Scholar 

  5. Joubert E, De Beer D, Malherbe CJ et al (2019) Formal honeybush tea industry reaches 20 year milestone – progress of product research targeting phenolic composition, quality and bioactivity. S Afr J Bot 127:58–79. https://doi.org/10.1016/j.sajb.2019.08.027

    Article  Google Scholar 

  6. Joubert E, Joubert ME, Bester C et al (2011) Honeybush (Cyclopia spp.): from local cottage industry to global markets – the catalytic and supporting role of research. S Afr J Bot 77:887–907. https://doi.org/10.1016/j.sajb.2011.05.014

    Article  Google Scholar 

  7. Karsen PA, Lötze E, Valentine AJ, Hoffman EW (2022) Propagation and cultivation practices of honeybush (Cyclopia spp.) for the sustainable production of an export quality indigenous South African tea. Crop Sci 62:1702-1733. https://doi.org/10.1002/csc2.20752

  8. Louw A, Joubert E, Visser K (2013) Phytoestrogenic potential of Cyclopia extracts and polyphenols. Planta Med 79:580–590. https://doi.org/10.1055/s-0032-1328463

    Article  CAS  PubMed  Google Scholar 

  9. Murakami S, Miura Y, Hattori M et al (2018) Cyclopia extracts enhance Th1-, Th2-, and Th17-type T cell responses and induce Foxp3+ cells in murine cell culture. Planta Med 84:311–319. https://doi.org/10.1055/s-0043-121270

    Article  CAS  PubMed  Google Scholar 

  10. Yoshida T, Malherbe CJ, Okon K et al (2020) Enhanced production of Th1- and Th2-type antibodies and induction of regulatory T cells in mice by oral administration of Cyclopia extracts with similar phenolic composition to honeybush herbal tea. J Funct Foods 64:103704. https://doi.org/10.1016/j.jff.2019.103704

    Article  CAS  Google Scholar 

  11. Schutte AL, Vlok JHJ, Van Wyk B-E (1995) Fire-survival strategy – a character of taxonomic, ecological and evolutionary importance in fynbos legumes. Plant Syst Evol 195:243–259. https://doi.org/10.1007/BF00989299

    Article  Google Scholar 

  12. Schutte AL (1997) Systematics of the genus Cyclopia Vent. (Fabaceae, Podalyriae). Edinb J Bot 54:125–170. https://doi.org/10.1017/S0960428600004005

    Article  Google Scholar 

  13. Du Toit SR, Campbell EE (1999) The effect of fire on two eastern Cape Cyclopia species (Fabaceae). S Afr J Bot 65:203–207. https://doi.org/10.1016/S0254-6299(15)30974-1

    Article  Google Scholar 

  14. McGregor GK (2018) The wild honeybush harvesting field guide. Department of Environmental Affairs and Development Planning, Western Cape Government, Cape Town

    Google Scholar 

  15. McGregor G (2017) An overview of the honeybush industry, Department of Environmental Affairs and Development Planning, Cape Town

    Google Scholar 

  16. Bester C, Joubert ME, Joubert E (2016) A breeding strategy for South African indigenous herbal teas. Acta Hortic 1127:15–22. https://doi.org/10.17660/ActaHortic.2016.1127.3

    Article  Google Scholar 

  17. Wu S-B, Long C, Kennelly EJ (2014) Structural diversity and bioactivities of natural benzophenones. Nat Prod Rep 31:1158–1174

    Article  CAS  PubMed  Google Scholar 

  18. El-Seedi H, El-Barbary M, El-Ghorab D et al (2010) Recent insights into the biosynthesis and biological activities of natural xanthones. Curr Med Chem 17:854–901. https://doi.org/10.2174/092986710790712147

    Article  CAS  PubMed  Google Scholar 

  19. Ibdah M, Martens S, Gang DR (2018) Biosynthetic pathway and metabolic engineering of plant dihydrochalcones. J Agric Food Chem 66:2273–2280. https://doi.org/10.1021/acs.jafc.7b04445

    Article  CAS  PubMed  Google Scholar 

  20. Falcone Ferreyra ML, Rius SP, Casati P (2012) Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci 3:222. https://doi.org/10.3389/fpls.2012.00222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schulze AE, Beelders T, Koch IS et al (2015) Honeybush herbal teas (Cyclopia spp.) contribute to high levels of dietary exposure to xanthones, benzophenones, dihydrochalcones and other bioactive phenolics. J Food Compos Anal 44:139–148. https://doi.org/10.1016/j.jfca.2015.08.002

    Article  CAS  Google Scholar 

  22. Stander MA, Redelinghuys H, Masike K et al (2019) Patterns of variation and chemosystematic significance of phenolic compounds in the genus Cyclopia (Fabaceae, Podalyrieae). Molecules 24:2352. https://doi.org/10.3390/molecules24132352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Walters NA, De Beer D, De Villiers A et al (2019) Genotypic variation in phenolic composition of Cyclopia pubescens (honeybush tea) seedling plants. J Food Compos Anal 78:129–137. https://doi.org/10.1016/j.jfca.2019.02.006

    Article  CAS  Google Scholar 

  24. Walters NA, De Beer D, Villiers A et al (2021) Comprehensive off-line CCC × LC-DAD-MS separation of Cyclopia pubescens Eckl. & Zeyh. phenolic compounds and structural elucidation of isolated compounds. Phytochem Anal 32:347–361. https://doi.org/10.1002/pca.2981

    Article  CAS  PubMed  Google Scholar 

  25. Alexander L, De Beer D, Muller M et al (2019) Bitter profiling of phenolic fractions of green Cyclopia genistoides herbal tea. Food Chem 276:626–635. https://doi.org/10.1016/j.foodchem.2018.10.030

    Article  CAS  PubMed  Google Scholar 

  26. Alexander L, De Beer D, Muller M et al (2019) Impact of steam treatment on shelf-life stability of a xanthone-rich green herbal tea (Cyclopia maculata Andrews Kies) – identifying quality changes during storage. J Sci Food Agric 99:1334–1341. https://doi.org/10.1002/jsfa.9308

    Article  CAS  PubMed  Google Scholar 

  27. De Beer D, Du Preez BVP, Joubert E (2021) Development of HPLC method for quantification of phenolic compounds in Cyclopia intermedia (honeybush) herbal tea infusions. J Food Compos Anal 104:104154. https://doi.org/10.1016/j.jfca.2021.104154

    Article  CAS  Google Scholar 

  28. Masike K, De Villiers A, De Beer D et al (2022) Application of direct injection-ion mobility spectrometry-mass spectrometry (DI-IMS-MS) for the analysis of phenolics in honeybush and rooibos tea samples. J Food Compos Anal 106:104308. https://doi.org/10.1016/j.jfca.2021.104308

    Article  CAS  Google Scholar 

  29. Joubert E, De Beer D (2011) Rooibos (Aspalathus linearis) beyond the farm gate: from herbal tea to potential phytopharmaceutical. S Afr J Bot 77:869–886. https://doi.org/10.1016/j.sajb.2011.07.004

    Article  Google Scholar 

  30. Roza O, Martins A, Hohmann J et al (2016) Flavonoids from Cyclopia genistoides and their xanthine oxidase inhibitory activity. Planta Med 82:1274–1278. https://doi.org/10.1055/s-0042-110656

    Article  CAS  PubMed  Google Scholar 

  31. Roza O, Lai W-C, Zupkó I et al (2017) Bioactivity guided isolation of phytoestrogenic compounds from Cyclopia genistoides by the pER8:GUS reporter system. S Afr J Bot 110:201–207. https://doi.org/10.1016/j.sajb.2016.06.001

    Article  CAS  Google Scholar 

  32. Ferreira D, Kamara BI, Brandt EV, Joubert E (1998) Phenolic compounds from Cyclopia intermedia (honeybush tea). 1. J Agric Food Chem 46:3406–3410. https://doi.org/10.1021/jf980258x

    Article  CAS  PubMed  Google Scholar 

  33. Kamara BI, Brand DJ, Brandt EV, Joubert E (2004) Phenolic metabolites from honeybush tea (Cyclopia subternata). J Agric Food Chem 52:5391–5395. https://doi.org/10.1021/jf040097z

    Article  CAS  PubMed  Google Scholar 

  34. Kamara BI, Brandt EV, Ferreira D, Joubert E (2003) Polyphenols from Honeybush tea (Cyclopia intermedia). J Agric Food Chem 51:3874–3879. https://doi.org/10.1021/jf0210730

    Article  CAS  PubMed  Google Scholar 

  35. Kokotkiewicz A, Luczkiewicz M, Pawlowska J et al (2013) Isolation of xanthone and benzophenone derivatives from Cyclopia genistoides (L.) Vent. (honeybush) and their pro-apoptotic activity on synoviocytes from patients with rheumatoid arthritis. Fitoterapia 90:199–208. https://doi.org/10.1016/j.fitote.2013.07.020

    Article  CAS  PubMed  Google Scholar 

  36. Kokotkiewicz A, Luczkiewicz M, Sowinski P et al (2012) Isolation and structure elucidation of phenolic compounds from Cyclopia subternata Vogel (honeybush) intact plant and in vitro cultures. Food Chem 133:1373–1382. https://doi.org/10.1016/j.foodchem.2012.01.114

    Article  CAS  Google Scholar 

  37. De Beer D, Schulze AE, Joubert E et al (2012) Food ingredient extracts of Cyclopia subternata (honeybush): variation in phenolic composition and antioxidant capacity. Molecules 17:14602–14624. https://doi.org/10.3390/molecules171214602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schulze AE, De Beer D, De Villiers A et al (2014) Chemometric analysis of chromatographic fingerprints shows potential of Cyclopia maculata (Andrews) Kies for production of standardized extracts with high xanthone content. J Agric Food Chem 62:10542–10551. https://doi.org/10.1021/jf5028735

    Article  CAS  PubMed  Google Scholar 

  39. Beelders T, De Beer D, Stander M, Joubert E (2014) Comprehensive phenolic profiling of Cyclopia genistoides (L.) Vent. by LC-DAD-MS and -MS/MS reveals novel xanthone and benzophenone constituents. Molecules 19:11760–11790. https://doi.org/10.3390/molecules190811760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mabizela GS, Muller M, De Beer D et al (2020) Effect of genotype and harvest season on quality characteristics of Cyclopia subternata: phenolic content and sensory profile. S Afr J Bot 132:491–501. https://doi.org/10.1016/j.sajb.2020.06.010

    Article  CAS  Google Scholar 

  41. Mabizela GS, von Du Preez BP, Human C et al (2022) A balancing act – Optimising harvest season of Cyclopia genistoides (honeybush tea) for enhanced phenolic content and acceptable sensory profile. J Food Compos Anal 110:104583. https://doi.org/10.1016/j.jfca.2022.104583

    Article  CAS  Google Scholar 

  42. Joubert E, Otto F, Grüner S, Weinreich B (2003) Reversed-phase HPLC determination of mangiferin, isomangiferin and hesperidin in Cyclopia and the effect of harvesting date on the phenolic composition of C. genistoides. Eur Food Res Technol 216:270–273

    Article  CAS  Google Scholar 

  43. Joubert E, De Beer D, Hernández I, Munné-Bosch S (2014) Accummulation of mangiferin, isomangiferin, iriflophenone-3-C-β-glucoside and hesperidin in honeybush leaves (Cyclopia genistoides Vent.) in response to harvest time, harvest interval and seed source. Ind Crop Prod 56:74–82. https://doi.org/10.1016/j.indcrop.2014.02.030

    Article  CAS  Google Scholar 

  44. North MS, Joubert E, De Beer D et al (2017) Effect of harvest date on growth, production and quality of honeybush (Cyclopia genistoides and C. subternata). S Afr J Bot 110:132–137. https://doi.org/10.1016/j.sajb.2016.08.002

    Article  Google Scholar 

  45. Du Preez BVP, De Beer D, Joubert E (2016) By-product of honeybush (Cyclopia maculata) tea processing as source of hesperidin-enriched nutraceutical extract. Ind Crop Prod 87:132–141. https://doi.org/10.1016/j.indcrop.2016.04.012

    Article  CAS  Google Scholar 

  46. Mei S, Ma H, Chen X (2021) Anticancer and anti-inflammatory properties of mangiferin: a review of its molecular mechanisms. Food Chem Toxicol 149:111997. https://doi.org/10.1016/j.fct.2021.111997

    Article  CAS  PubMed  Google Scholar 

  47. Du S, Liu H, Lei T et al (2018) Mangiferin: an effective therapeutic agent against several disorders (review). Mol Med Rep 18:4775–4786. https://doi.org/10.3892/mmr.2018.9529

    Article  CAS  PubMed  Google Scholar 

  48. Du Toit J, Joubert E, Britz TJ (1998) Honeybush tea–a rediscovered indigenous South African herbal tea. J Sustain Agric 12:67–84. https://doi.org/10.1300/J064v12n02_06

    Article  Google Scholar 

  49. Du Toit J, Joubert E, Britz TJ (1999) Identification of microbial contaminants present during the curing of honeybush tea (Cyclopia). J Sci Food Agric 79:2040–2244

    Article  Google Scholar 

  50. Bergh AJ, Muller M, Van der Rijst M, Joubert E (2017) Optimisation and validation of high-temperature oxidation of Cyclopia intermedia (honeybush) – from laboratory to factory. S Afr J Bot 110:152–160. https://doi.org/10.1016/j.sajb.2016.11.012

    Article  CAS  Google Scholar 

  51. Joubert E, Petrus A, Du Preez B-VP et al (2022) Pre-oxidation drying of Cyclopia plant material to eliminate a bottleneck in conventional manufacture of traditional honeybush tea – impact on infusion quality. Appl Food Res 2:100182. https://doi.org/10.1016/j.afres.2022.100182

    Article  CAS  Google Scholar 

  52. Alexander L, Moelich EI, De Beer D et al (2021) High-temperature oxidation reduces the bitterness of honeybush infusions depending on changes in phenolic composition. LWT Food Sci Technol 139:110608. https://doi.org/10.1016/j.lwt.2020.110608

    Article  CAS  Google Scholar 

  53. De Beer D, Muller M, Walters NA et al (2022) The road to commercialisation of an unutilised Cyclopia species for herbal tea production – the case of Cyclopia pubescens. S Afr J Bot 150:821–828. https://doi.org/10.1016/j.sajb.2022.08.042

  54. Joubert E, Richards ES, Van der Merwe JD et al (2008) Effect of species variation and processing on phenolic composition and in vitro antioxidant activity of aqueous extracts of Cyclopia spp. (honeybush tea). J Agric Food Chem 56:954–963

    Article  CAS  PubMed  Google Scholar 

  55. Beelders T, De Beer D, Joubert E (2015) Thermal degradation kinetics modeling of benzophenones and xanthones during high-temperature oxidation of Cyclopia genistoides (L.) Vent. plant material. J Agric Food Chem 63:5518–5527. https://doi.org/10.1021/acs.jafc.5b01657

    Article  CAS  PubMed  Google Scholar 

  56. Danton O, Alexander L, Hunlun C et al (2018) Bitter taste impact and thermal conversion of a naringenin glycoside from Cyclopia genistoides. J Nat Prod 81:2743–2749. https://doi.org/10.1021/acs.jnatprod.8b00710

    Article  CAS  PubMed  Google Scholar 

  57. Wezeman T, Bräse S, Masters KS (2015) Xanthone dimers: a compound family which is both common and privileged. Nat Prod Rep 32:6–28. https://doi.org/10.1039/c4np00050a

    Article  CAS  PubMed  Google Scholar 

  58. Beelders T, De Beer D, Ferreira D et al (2017) Thermal stability of the functional ingredients, glucosylated benzophenones and xanthones of honeybush (Cyclopia genistoides), in an aqueous model solution. Food Chem 233:412–421. https://doi.org/10.1016/j.foodchem.2017.04.083

    Article  CAS  PubMed  Google Scholar 

  59. Beelders T, De Beer D, Kidd M, Joubert E (2018) Modeling of thermal degradation kinetics of the C-glucosyl xanthone mangiferin in an aqueous model solution as a function of pH and temperature and protective effect of honeybush extract matrix. Food Res Int 103:103–109. https://doi.org/10.1016/j.foodres.2017.10.020

    Article  CAS  PubMed  Google Scholar 

  60. Capuano E, Oliviero T, Van Boekel MAJS (2018) Modeling food matrix effects on chemical reactivity: challenges and perspectives. Crit Rev Food Sci Nutr 58:2814–2828. https://doi.org/10.1080/10408398.2017.1342595

    Article  CAS  PubMed  Google Scholar 

  61. Joubert E, Manley M, Maicu C, De Beer D (2010) Effect of pre-drying treatments and storage on color and phenolic composition of green honeybush (Cyclopia subternata) herbal tea. J Agric Food Chem 58:338–344. https://doi.org/10.1021/jf902754b

    Article  CAS  PubMed  Google Scholar 

  62. Alexander L, De Beer D, Muller M et al (2017) Modifying the sensory profile of green honeybush (Cyclopia maculata) herbal tea through steam treatment. LWT Food Sci Technol 82:49–57. https://doi.org/10.1016/j.lwt.2017.04.018

    Article  CAS  Google Scholar 

  63. Alexander L, De Beer D, Muller M et al (2018) Steam treatment of green Cyclopia longifolia – delivering herbal tea infusions with a high bioactive content and improved aroma. S Afr J Bot 114:316–322. https://doi.org/10.1016/j.sajb.2017.11.013

    Article  CAS  Google Scholar 

  64. Agapouda A, Butterweck V, Hamburger M et al (2020) Honeybush extracts (Cyclopia spp.) rescue mitochondrial functions and bioenergetics against oxidative injury. Oxidative Med Cell Longev 2020:1948602. https://doi.org/10.1155/2020/1948602

    Article  CAS  Google Scholar 

  65. Van der Merwe JD, De Beer D, Swanevelder S et al (2017) Dietary exposure to honeybush (Cyclopia) polyphenol-enriched extracts altered redox status and expression of oxidative stress and antioxidant defense-related genes in rat liver. S Afr J Bot 110:230–239. https://doi.org/10.1016/j.sajb.2016.08.004

    Article  CAS  Google Scholar 

  66. Bosman SC, De Beer D, Beelders T et al (2017) Simultaneous optimisation of extraction of xanthone and benzophenone α-glucosidase inhibitors from Cyclopia genistoides and identification of superior genotypes for propagation. J Funct Foods 33:21–31. https://doi.org/10.1016/j.jff.2017.03.011

    Article  CAS  Google Scholar 

  67. Schulze AE, De Beer D, Mazibuko SE et al (2016) Assessing similarity analysis of chromatographic fingerprints of Cyclopia subternata extracts as potential screening tool for in vitro glucose utilisation. Anal Bioanal Chem 408:639–649. https://doi.org/10.1007/s00216-015-9147-7

    Article  CAS  PubMed  Google Scholar 

  68. Su K, Ee KH, Sun J et al (2022) Simultaneous fractionation of multiple classes of polyphenols from honeybush tea using solid-phase extraction. Int J Food Sci Technol 57:1666–1678. https://doi.org/10.1111/ijfs.15531

    Article  CAS  Google Scholar 

  69. Miller N, Malherbe CJ, Joubert E (2020) Xanthone- and benzophenone-enriched nutraceutical: development of a scalable fractionation process and effect of batch-to-batch variation of the raw material (Cyclopia genistoides). Sep Purif Technol 237:116465. https://doi.org/10.1016/j.seppur.2019.116465

    Article  CAS  Google Scholar 

  70. Miller N, Malherbe CJ, Joubert E (2020) In vitro α-glucosidase inhibition by honeybush (Cyclopia genistoides) food ingredient extract—potential for dose reduction of acarbose through synergism. Food Funct 11:6476–6486. https://doi.org/10.1039/D0FO01306D

    Article  CAS  PubMed  Google Scholar 

  71. Miller N, Bosman SC, Malherbe CJ et al (2019) Membrane selection and optimisation of tangential flow ultrafiltration of Cyclopia genistoides extract for benzophenone and xanthone enrichment. Food Chem 292:121–128. https://doi.org/10.1016/j.foodchem.2019.04.047

    Article  CAS  PubMed  Google Scholar 

  72. Kilcast D, Subramaniam P (2011) Food and beverage stability and shelf life. Elsevier, Burlington

    Book  Google Scholar 

  73. Onwulata C (2005) Encapsulated and powdered foods. Taylor and Francis, Boca Raton

    Book  Google Scholar 

  74. Pauck C, De Beer D, Aucamp M et al (2017) Inulin suitable as reduced-kilojoule carrier for production of microencapsulated spray-dried green Cyclopia subternata (honeybush) extract. LWT Food Sci Technol 75:631–639. https://doi.org/10.1016/j.lwt.2016.10.018

    Article  CAS  Google Scholar 

  75. De Beer D, Pauck CE, Aucamp M et al (2018) Phenolic and physicochemical stability of a functional beverage powder mixture during storage: effect of the microencapsulant inulin and food ingredients. J Sci Food Agric 98:2925–2934. https://doi.org/10.1002/jsfa.8787

    Article  CAS  PubMed  Google Scholar 

  76. Human C, Danton O, De Beer D et al (2021) Identification of a novel di-C-glycosyl dihydrochalcone and the thermal stability of polyphenols in model ready-to-drink beverage solutions with Cyclopia subternata extract as functional ingredient. Food Chem 351:129273. https://doi.org/10.1016/j.foodchem.2021.129273

    Article  CAS  PubMed  Google Scholar 

  77. Miller N, Petrus A, Moelich EI et al (2022) Heat treatment improves the sensory properties of the ultrafiltration by-product of honeybush (Cyclopia genistoides) extract. J Sci Food Agric 102:1047–1055. https://doi.org/10.1002/jsfa.11440

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalene de Beer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

de Beer, D., Human, C., Joubert, E. (2023). Phenolic Composition of Honeybush and Changes During Herbal Tea and Extract Production. In: Mérillon, JM., Riviere, C., Lefèvre, G. (eds) Natural Products in Beverages. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-04195-2_219-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04195-2_219-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04195-2

  • Online ISBN: 978-3-031-04195-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics