Skip to main content

Production of New Ciders: Chemical and Sensory Profiles

  • Living reference work entry
  • First Online:
Natural Products in Beverages

Abstract

Cider is part of the cultural heritage of several European countries and also a burgeoning market based on quality and a wide offer of different innovative products. Traditional ciders labeled with Geographical Protection Figures, high-end products such as sparkling and ice ciders, together with craft ciders made from freshly pressed apples, pure or flavored with different fruit juices or aromas, represent the wide and diverse cider market of today. Cider can be made from any apple cultivar but it is the specific varieties of cider apples that give the beverage some of its most appreciated sensory attributes. The production method (pressing systems, clarification of musts or ciders, microorganisms involved in fermentation) gives the ciders some of their most distinctive features. However, regardless of the origin and production methods, ciders share some chemical characteristics. For example, the families of phenolic compounds, among which hydroxycinnamic acids and procyanidins predominate, the presence of higher alcohols and esters in major proportions, or the existence of aromatic compounds in trace concentrations, only detectable by olfactometric analysis. The ciders’ sensory profiles are clearly different. The formal description of these profiles is currently a very important work topic for different reasons. As part of the official control of ciders labeled by Geographical Protection Figures, the organoleptic characteristics of the ciders must be defined. As part of the promotion of the new ciders, their sensory profiles must be established to guide the choice of consumers and favor the expansion of their market.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ABV:

Alcohol by Volume

AEDA:

Aroma Extract Dilution Analysis

CAGR:

Compound Annual Growth Rate

DPn:

Degree of Polymerization

GPY:

Glucose Peptone Yeast

ITS-RFLP:

Restriction Fragment Length Polymorphism of rDNA

LAB:

Lactic Acid Bacteria

mtDNA-RFLP:

Restriction Fragment Length Polymorphism of mitochondrial DNA.

PFGE:

Pulsed Field Gel Electrophoresis

PME:

Pectin-Methyl Esterase

USD:

United States Dollar

References

  1. European Cider Trends 2021. www.aicv.org/Industrydata/Publications. Accessed 20 May 2022

  2. eAmbrosia., the EU Geographical Indications Register. https://ec.europe.eu/info/food-farming-fisheries/food-safety-and-quality. Accessed 27 June 2022

  3. Market Data Forecast|Industry Reports & Business Intelligence. www.marketdataforescast.com. Accessed 5 June 2022

  4. Wilson A, Johnson JB, Batley R, Lal P, Wakeling L, Naiker M (2021) Authentication using volatile composition: a proof-of-concept study on the volatile profiles of fourteen Queensland ciders. Beverages 7:28

    Article  CAS  Google Scholar 

  5. Craft Cider Market Report. https://www.transparencymarketresearch.com/craft-cider-market.html. Accessed 27 June 2022

  6. Guyot S, Symoneaux R, Le Quéré JM, Bauduin R (2014) Les Polyphénols de la Pomme aux Cidres: diversité variétale et procédés, facteurs clé de la modulation des saveurs et des couleurs. Innovations Agronomiques 42:105–123

    Google Scholar 

  7. Global Craft Cider Market. https://marketresearchfuture.com/reports/craft-cider-market. Accessed 5 June 2022

  8. Trust Mark Australian Craft Cider. https://www.cideraustralia.org.au/trustmark. Accessed 27 June 2022

  9. Alexander TR, King J, Zimmerman A, Miles CA (2016) Regional variations of four cider apple (Malus x domestica Borth.) cultivars in Northwest and Central Washington. HortSci 51:1498–1502

    Article  Google Scholar 

  10. Tozer P, Galinato SP, Ross CF, Miles CA, McCluskey JJ (2015) Sensory analysis and willingness to pay for craft cider. J Wine Econ 10:314–328

    Article  Google Scholar 

  11. Thompson-Witrick KA, Goodrich KM, Neilson AP, Hurley EK, Peck GM, Stewart AC (2014) Characterization of the polyphenol composition of 20 cultivars of cider, processing and dessert apples (Malus x domestica Borkh) apples grown in Virginia. J Agric Food Chem 62:10181–10191

    Article  CAS  Google Scholar 

  12. Plotkowski DJ, Cline JA (2021) Evaluation of selected cider apple (Malus domestica Borkh.) cultivars grown in Ontario. II. Juice Attributes. Can J Plant Sci 101:836–852

    Article  CAS  Google Scholar 

  13. Détolle, A. (2018). Vive le Québec cidre! Le paysage social cidricole québécois. Une etnographie alcoologique. (Long live Quebec cider! The Quebec cider-making social landscape. An alcoholic ethnography). PhD dissertation, University of Concordia, Montreal

    Google Scholar 

  14. Cahier des Charges Cidre de Glace du Québec. https://cartv.gouv.ca/appellationsreconnues. Accessed 5 June 2022

  15. Suárez Valles B, Pando Bedriñana R, Lastra Queipo A, Mangas Alonso JJ (2008) Screening of cider yeasts for sparkling cider production Champenoise method. Food Microbiol 25:690–697

    Article  Google Scholar 

  16. Pando Bedriñana R, Mangas Alonso JJ, Suárez Valles B (2017) Evaluation of autochthonous Saccharomyces bayanus strains under stress conditions for making ice ciders. LWT-Food Sci Technol 81:217–225

    Article  Google Scholar 

  17. Renard CMGC, Le Quéré JM, Bauduin R, Symoneaux R, Le Bourvellec C, Baron A (2011) Modulating polyphenolic composition and organoleptic properties of apple juices by manipulating the pressing conditions. Food Chem 124:117–125

    Article  CAS  Google Scholar 

  18. Sanoner P, Guyot S, Marnet N, Molle D, Drilleau JF (1999) Polyphenol profiles of French cider apple varieties (Malus domestica sp.). J Agric Food Chem 47:4847–4853

    Article  CAS  Google Scholar 

  19. Alonso-Salces RM, Barranco A, Berrueta LA, Gallo B, Vicente F (2004) Polyphenolic profiles of Basque cider apple cultivars and their technological properties. J Agric Food Chem 52:2938–2952

    Article  CAS  Google Scholar 

  20. Alonso-Salces RM, Herrero C, Barranco A, Berrueta LA, Gallo B, Vicente F (2005) Classification of apple fruits according to their maturity state by the pattern recognition analysis of their polyphenolic compositions. Food Chem 93:113–123

    Article  CAS  Google Scholar 

  21. Le Deun E, Van der Werf R, Le Bail G, Le Quéré JM, Guyot S (2015) HPLC-DAD-MS profiling of polyphenols responsible for the yellow- Orange color in apple juices of different French cider apple varieties. J Agric Food Chem 63:7675–7684

    Article  Google Scholar 

  22. Diñeiro García Y, Suárez Valles B, Picinelli Lobo A (2009) Phenolic and antioxidant composition of by-products from the cider industry: apple pomace. Food Chem 117:731–738

    Article  Google Scholar 

  23. Christensen LP, Edelenbos M, Kreutzmann S (2008) Fruits and vegetables of moderate climate. In: Berger RG (ed) Flavours and fragrances. Springer, Berlin

    Google Scholar 

  24. Arias Abrodo P, Díaz Llorente D, Junco Corujedo S, Dapena de la Fuente E, Gutiérrez Álvarez MD, Blanco Gomis D (2010) Characterisation of Asturian cider apples on the basis of their aromatic profile by high-speed gas chromatography and solid-phase microextraction. Food Chem 121:1312–1318

    Article  Google Scholar 

  25. Lea AGH (1995) Cidermaking. In: Lea AGH, Piggott JR (eds) Fermented beverage production, 1st edn. Chapman & Hall, London

    Chapter  Google Scholar 

  26. Le Quéré JM, Husson F, Renard CMGC, Primault J (2006) French cider characterization by sensory, technological and chemical evaluations. LWT-Food Sci Technol 39:1033–1044

    Article  Google Scholar 

  27. Hubert B, Baron A, Le Quéré JM, Renard CMGC (2007) Influence of prefermentary clarification on the composition of apple musts. J Agric Food Chem 55:5118–5122

    Article  CAS  Google Scholar 

  28. Villière A, Arvisenet G, Bauduin R, Le Quéré JM, Sérot T (2015) Influence of cider-making process parameters on the odourant volatile composition of hard ciders. J Inst Brew 121:95–105

    Article  Google Scholar 

  29. Coton E, Coton M, Guichard H (2016) Cider (cyder; hard cider): the product and its manufacture. Encyclopedia of Food and Health:119–128

    Google Scholar 

  30. Littleson B, Chang E, Neill C, Phetxumphou K, Sandbrook A, Stewart A, Lahne J (2022) Sensory and chemical properties of Virginia hard cider: effects of apple cultivar selection and fermentation strategy. J Am Soc Brew Chem. https://doi.org/10.1080/03610470.2022.2057780

  31. Suárez B, Pando R, Fernández N, Querol A, Madrera R (2007) Yeast species assocciated with the spontaneous fermentation of cider. Food Microbiol 24:25–31

    Article  Google Scholar 

  32. Degré R (1993) Selection and commercial cultivation of wine yeast and bacteria. In: Fleet GH (ed) Wine microbiology and biotechnology, Chur. Harwood Academic Publishers, Switzerland

    Google Scholar 

  33. Querol A, Barrio E, Huerta T, Ramón D (1992) Molecular monitoring of wine fermentations conducted by dry yeast strains. Appl Environ Microbiol 58:2948–2952

    Article  CAS  Google Scholar 

  34. Comitini F, Gobbi M, Domizio P, Romani C, Lencioni L, Mannazzu I, Ciani M (2011) Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae. Food Microbiol 28:873–882

    Article  CAS  Google Scholar 

  35. Suárez-Lepe JA, Morata A (2012) New trends in yeast selection for winemaking. Trends Food Sci Tech 23:39–50

    Article  Google Scholar 

  36. Pando Bedriñana R, Lastra Queipo A, Suárez Valles B (2012) Screening of enzymatic activities in non-Saccharomyces cider yeasts. J Food Biotech 36:683–689

    Google Scholar 

  37. Pando Bedriñana R, Picinelli Lobo A, Rodríguez Madrera R, Suárez Valles B (2021) New ciders made by and exhaustion method: an option to valorise subproducts from the making of ice ciders. Beverages 7:75

    Article  Google Scholar 

  38. Suárez B, Pando R, Gonáalez A, Querol A (2007) A molecular genetic study of natural strains of saccharomyces isolated from Asturian cider fermentations. J Appl Microbiol 103:778–786

    Google Scholar 

  39. Pando Bedriñana, R (2010) Selección y caracterización de levaduras autóctonas de sidra (Selection and characterisation of autochthonous cider yeasts). PhD dissertation, University of Oviedo

    Google Scholar 

  40. Buron N, Coton M, Legendre P et al (2012) Implications of Lactobacillus collinoides and Brettanomyces/Dekkera anomala in phenolic off-flavour defects of ciders. Int J Food Microbiol 153:159–165

    Article  CAS  Google Scholar 

  41. Coton M, Romano A, Spano G et al (2010) Occurrence of biogenic amine-forming lactic acid bacteria in wine and cider. Food Microbiol 27:1078–1085

    Article  CAS  Google Scholar 

  42. Ibarburu I, Puertas AI, Berregi I, Rodríguez-Carvajal MA, Prieto A, Dueñas MT (2015) Production and partial characterization of exopolysaccharides produced by two Lactobacillus suebicus strains isolated from cider. Int J Food Microbiol 214:54–62

    Article  CAS  Google Scholar 

  43. Pando Bedriñana R, Picinelli Lobo A, Suárez Valles B (2019) Influence of the method of obtaining freeze-enriched juices and year of harvest. Food Chem 274:376–383

    Article  Google Scholar 

  44. Pando Bedriñana R, Picinelli Lobo A, Rodríguez Madrera R, Suárez Valles B (2020) Characteristics of ice juices and ciders made by cryo-extraction with different cider apple varieties and yeast strains. Food Chem 310:125831

    Article  Google Scholar 

  45. Cousin FJ, Le Guellec R, Chuat V, Dalmasso M, Laplace JM, Cretenet M (2019) Multiplex PCR for rapid identification of major lactic acid bacteria genera in cider and other fermented foods. Int J Food Microbiol 291:17–24

    Article  CAS  Google Scholar 

  46. Stewart GG (2017) The production of secondary metabolites with flavour potential during brewing and distilling wort fermentations. Fermentation 3:1–27

    Article  Google Scholar 

  47. Schwab W, Schreier P (1988) Simultaneous enzyme catalysis extraction: a versatile technique for the study of flavor precursor. J Agric Food Chem 36:1238–1242

    Article  CAS  Google Scholar 

  48. Rodríguez Madrera R, Pando Bedriñana R, Suárez Valles B (2015) Production and characterization of aroma compounds from apple pomace by solid-state fermentation with selected yeasts. LWT-Food Sci Technol 64:1342–1353

    Article  Google Scholar 

  49. Moreno-Arribas V, Pueyo E, Nieto FJ, Martínez-Álvarez PJ, Polo MC (2000) Influence of the polysaccharides and the nitrogen compounds on foaming properties of sparkling wines. Food Chem 70:309e317

    Article  Google Scholar 

  50. Real Decreto 72/2017. por el que se aprueba la norma de calidad de las diferentes categorías de la sidra natural y de la sidra. (Royal Decree 72/2017 which approves the quality standard for the different categories of natural cider and cider). BOE No. 44, Accessed 21 Feb 2017

    Google Scholar 

  51. Kirkey C, Braden T (2014) An introduction to ice cider in Quebec: a preliminary overview. J East Townsh Stud 43:47–62

    Google Scholar 

  52. Picinelli Lobo A, Antón-Díaz MJ, Pando Bedriñana R, Fernández García O, Hortal-García R, Suárez Valles B (2018) Chemical, olfactometric and sensory description of single-variety cider apple juices obtained by cryo-extraction. LWT-Sci Food Technol 90:193–200

    Article  CAS  Google Scholar 

  53. Picinelli Lobo A, Pando Bedriñana R, Rodríguez Madrera R, Suárez Valles B (2021) Aromatic, olfactometric and consumer description of sweet ciders obtained by cryo-extraction. Food Chem 338:127829

    Article  CAS  Google Scholar 

  54. Masneuf I, Hansen J, Groth C, Piskur J, Dubourdieu D (1998) New hybrids between Saccharomyces sensu stricto yeast species found among wine and cider production strains. Appl Microbiol Environ 64:3887–3892

    Article  CAS  Google Scholar 

  55. Naumov GI, Nguyen HV, Naumova ES, Michel A, Aigle M, Gaillardin C (2001) Genetic identification of Saccharomyces bayanus var. uvarum, a cider-fermenting yeast. Int J Food Microbiol 65:163–171

    Article  CAS  Google Scholar 

  56. Coton E, Coton M, Levert D, Casagerola S, Sohier D (2006) Yeast ecology in French cider and black olive natural fermentations. Int J Food Microbiol 108:130–135

    Article  CAS  Google Scholar 

  57. Querol A, Barrio E, Ramón D (1994) Population dynamics of natural saccharomyces strains during wine fermentation. Int J Food Microbiol 21:315–323

    Google Scholar 

  58. Esteve-Zarzoso B, Gostíncar A, Bobet R, Uruburu F, Querol A (2000) Selection and molecular characterization of wine yeasts isolated from the’El Penedés' area (Spain). Food Microbiol 17:553–562

    Article  CAS  Google Scholar 

  59. Bidan P, Feuillat M, Moulin J (1986) Les vins mousseux (Sparkling wines). Rappot de la France 65éme. Assemblée Génerale de l’OIV Bull OIV 59:563–626

    Google Scholar 

  60. Pigeau GM, Inglis DL (2005) Upregulation of ALD3 and GPD1 in Saccharomyces cerevisiae during icewine fermentation. J Appl Microbiol 99:112–125

    Article  CAS  Google Scholar 

  61. Gibson BR, Lawrence SJ, Leclaire JPR, Powell CD, Smart KA (2007) Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol Rev 31:535–569

    Article  CAS  Google Scholar 

  62. Kontkanen D, Inglis DL, Pickering GJ, Reynolds A (2007) Effect of yeast inoculation rate, acclimatization, and nutrient addition on icewine fermentation. Am J Enol Vitic 55:363–370

    Article  Google Scholar 

  63. Bauer FF, Pretorius IS (2000) Yeast stress response and fermentation efficiency: how to survive the making of wine a review. S Afr J Enol Vitic 21:27–51

    Google Scholar 

  64. Belloch C, Orlic S, Barrio E, Querol A (2008) Fermentative stress adaptation of hybrids within the Saccharomyces sensu stricto complex. Int J Food Microbiol 122:188–195

    Article  CAS  Google Scholar 

  65. Bellon JR, Yang F, Day MP, Inglis DL, Chambers PJ (2015) Designing and creating saccharomyces interspecific hybrids for improved, industry relevant, phenotypes. Appl Microbiol Biotechnol 99:8597–8609

    Google Scholar 

  66. Masneuf-Pomarède I, Bely M, Marullo P, Lonvaud-Funel A, Dubourdieu D (2010) Reassessment of phenotypic traits for Saccharomyces bayanus var. uvarum wine yeast strains. Int J Food Microbiol 139:79–86

    Article  Google Scholar 

  67. Imura M, Iwakiri R, Bamba T, Fukusaki E (2011) Metabolomics approach to reduce the Crabtree effect in continuous culture of Saccharomyces cerevisiae. Food Microbiol 28:873–882

    Google Scholar 

  68. Habegger L, Rodrigues Crespo K, Dabros M (2018) Preventing overflow metabolism in Crabtree-positive microorganisms through on-line monitoring and control of fed-batch fermentations. Fermentation 4:79

    Article  CAS  Google Scholar 

  69. Edwards JC. 1H qNMR of alcoholic cider – detailed chemical component distribution. https://www.process-nmr.com. Accessed 21 July 2022

  70. Alonso-Salces RM, Guyot S, Herrero C, Berrueta LA, Drilleau JF, Gallo B, Vicente F (2004) Chemometric characterisation of Basque and French ciders according to their polyphenolic profiles. Anal Bioanal Chem 379:464–475

    Article  CAS  Google Scholar 

  71. Rodríguez Madrera R, Picinelli Lobo A, Suárez Valles B (2006) Phenolic profile of Asturian ciders. J Agric Food Chem 54:120–124

    Article  Google Scholar 

  72. Marks SC, Mullen W, Crozier A (2007) Flavonoid and chlorogenic acid profiles of English cider apples. J Sci Food Agric 87:719–728

    Article  CAS  Google Scholar 

  73. Alonso-Salces RM, Herrero C, Barranco A, López-Márquez DM, Berrueta LA, Gallo B, Vicente F (2006) Polyphenolic compositions of Basque natural ciders: a chemometric study. Food Chem 97:438–446

    Article  CAS  Google Scholar 

  74. Symoneaux R, Baron A, Marnet N, Bauduin R, Chollet S (2014) Impact of apple procyanidins on sensory perception in model cider (part I): polymerisation degree and concentration. LWT-Sci Food Technol 57:22–27

    Article  CAS  Google Scholar 

  75. Symoneaux R, Chollet S, Bauduin R, Le Quéré JM, Baron A (2014) Impact of apple procyanidins on sensory perception in model cider (part 2): degree of polymerisation and interactions with the matrix components. LWT-Sci Food Technol 57:28–34

    Article  CAS  Google Scholar 

  76. Laaksonen O, Kuldjärv R, Paalme T, Virkki M, Yang B (2017) Impact of apple cultivar, ripening stage, fermentation type and yeast strain on phenolic composition of apple ciders. Food Chem 233:20–37

    Article  Google Scholar 

  77. Zurriarain-Ocio A, Zurriarain J, Etxebeste O, Dueñas MT, Berregi I (2022) Evolution of main polyphenolics during cidermaking. LWT-Sci Food Technol 167:113798

    Article  Google Scholar 

  78. Buron N, Guichard H, Coton E, Ledauphin J, Barillier D (2011) Evidence of 4-ethylcatechol as one of the main phenolic off-flavour markers in French ciders. Food Chem 125:542–548

    Article  CAS  Google Scholar 

  79. Haider W, Barillier D, Hayat A, Gaillard JL, Ledauphin J (2014) Rapid quantification and comparison of major volatile compounds of ciders from France (Normandy and Brittany) using microextraction by packed sorbent (MEPS). Anal Meth 6:1364–1376

    Article  CAS  Google Scholar 

  80. Picinelli Lobo A, Antón-Díaz MJ, Mangas Alonso JJ, Suárez Valles B (2016) Characterization of Spanish ciders by means of chemical and olfactometric profiles and chemometrics. Food Chem 213:505–513

    Article  CAS  Google Scholar 

  81. Antón MJ, Suárez Valles B, García Hevia A, Picinelli Lobo A (2014) Aromatic profile of ciders by chemical quantitative, gas-chromatography-olfactometry, and sensory analysis. Food Sci 79:S92–S99

    Article  Google Scholar 

  82. Perestrelo R, Silva CL, Medina S, Pereira R (2019) Untargeted fingerprinting of cider volatiles from different geographical regions by HS-SPME/GC-MS. Microchem J 148:643–651

    Article  CAS  Google Scholar 

  83. Rosend J, Kuldjärv R, Rosenvald S, Paalme T (2019) The effects of apple variety, ripening stage, and yeast strain on the volatile composition of apple cider. Heliyon 5:e01953

    Article  Google Scholar 

  84. Medina S, Perestrelo R, Pereira R, Câmara JS (2020) Evaluation of volatilomic fingerprint from apple fruits to cider: a useful tool to find putative biomarkers for each apple variety. Foods 9:1830

    Article  CAS  Google Scholar 

  85. Rodríguez Madrera R, García Hevia A, Palacios García N, Suárez Valles B (2008) Evolution of aroma compounds in sparkling ciders. LWT-Food Sci Technol 41:2064–2069

    Article  Google Scholar 

  86. de-la-Fuente-Blanco A, Ferreira V (2020) Gas chromatography-Olfactometry (GC-O) for the semi-quantitative screening of wine aroma. Foods 9:1892

    Article  CAS  Google Scholar 

  87. Xu Y, Fan W, Qian MC (2007) Characterization of aroma compounds in apple cider using solvent-assisted flavor evaporation and headspace solid-phase microextraction. J Agric Food Chem 55:3051–3057

    Article  CAS  Google Scholar 

  88. Villière A, Arvisenet G, Lethuaut L, Prost C, Sérot T (2012) Selection of a representative extraction method for the analysis of odourant volatile composition of French cider by GC–MS–O and GC x GC–TOF-MS. Food Chem 131:1561–1568

    Article  Google Scholar 

  89. Pérez-Elortondo, FJ, Zannoni, M (2021). Guidelines for sensory analysis of Protected Designation of Origin food products and wines. European Sensory Science Society (E3S), Acribia, S.A., Zaragoza

    Google Scholar 

  90. Traditional Welsh Cider Regulation (2017). https://ec.europa.eu/info/food-farming-fisheries/food-safety-and-quality/certification/quality-labels/geographical-indications-register. Accessed 12 Aug 2022

  91. Symoneaux R, Chollet S, Patron C, Bauduin R, Le Quéré JM, Baron A (2015) Prediction of sensory characteristics of cider according to their biochemical composition: use of a central composite design and external validation by cider professionals. LWT-Food Sci Technol 61:63–69

    Article  CAS  Google Scholar 

  92. Cole EJ (2022) The development of a Lexicon for Virginia ciders through descriptive analysis. Thesis master degree in life sciences, University of Virginia

    Google Scholar 

  93. Suárez Valles B, Palacios García N, Rodríguez Madrera R, Picinelli Lobo A (2005) Influence of yeast strain and aging time on free amino acid changes in sparkling ciders. J Agric Food Chem 53:6408–6413

    Article  Google Scholar 

  94. Picinelli Lobo A, Fernández Tascón N, Rodríguez Madrera R, Suárez Valles B (2005) Sensory and foaming properties of sparkling cider. J Agric Food Chem 53:10051–10056

    Article  CAS  Google Scholar 

  95. Fernandez P, Sabik H, Graveline N, Bastien R, Clément A (2017) La valorisation sensorielle et physico-chimique du cidre de glace québécois. (The sensory and physico-chemical valorisation of Quebec ice cider). In: Clotier LM, Détolle A (eds) La transformation du cidre à Québec. Perspective écosystémique. (The transformation of cider in Quebec. Ecosystem perspective). Press of the University of Quebec, Quebec

    Google Scholar 

  96. Ares G, Antúnez L, Bruzzone F et al (2015) Comparison of sensory product profiles generated by trained assessors and consumers. Food Qual Pref 45:75–86

    Article  Google Scholar 

  97. Jaeger SR, Chheang SL, Yin JI, Bava CM, Giménez A, Vidal L, Ares G (2013) Check-All-That-Apply (CATA) responses elicited by consumers: within assessor reproducibility and stability of sensory product characterization. Food Qual Pref 30:56–67

    Article  Google Scholar 

  98. Meyners M, Castura JC, Carr BT (2013) Existing and new approaches for the analysis of CATA data. Food Qual Pref 30:309–319

    Article  Google Scholar 

  99. Phetxumphou K, Cox AN, Lahne J (2020) Development and characterization of a Check- All-That-Apply (CATA) lexicon for Virginia hard (alcoholic) ciders. J Am Soc Brew Chem 78:299–307. https://doi.org/10.1080/03610470.2020.1768784

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Picinelli Lobo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pando Bedriñana, R., Rodríguez Madrera, R., Picinelli Lobo, A. (2023). Production of New Ciders: Chemical and Sensory Profiles. In: Mérillon, JM., Riviere, C., Lefèvre, G. (eds) Natural Products in Beverages. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-04195-2_213-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04195-2_213-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04195-2

  • Online ISBN: 978-3-031-04195-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics