Skip to main content

Accuracy of Nonlinear Substructuring Technique in the Modal Domain

  • Conference paper
  • First Online:
Dynamic Substructures, Volume 4

Abstract

The dynamic analysis of complex engineering systems can be performed by considering the assemblies as composed of subsystems and coupling them through substructuring techniques. A technique in the modal domain called Nonlinear Coupling Procedure (NLCP) has been recently defined to couple subsystems connected through nonlinear connections by using their Nonlinear Normal Modes (NNMs). It manages to capture the main dynamic features of the system, i.e., the backbone of each NNM, and it provides satisfactory results in terms of mode shape and resonance frequency as function of the excitation level of the assembled system, with a considerable reduction of the computational time. However the results may be inaccurate due to approximations either in the models of the subsystems or due to the considered coupling technique. Furthermore, nonlinear subsystems can be the cause of complex behaviors of the assembly and then their models need to be carefully characterized. Thus, it is necessary to evaluate the reliability of the method in terms of the accuracy of the solution. This is done by defining a reliability ratio based on energy concepts depending on the level of the excitation acting on the system. The effectiveness of the reliability ratio of nonlinear techniques is verified on the NLCP applied to a mechanical system with localized nonlinearities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. de Klerk, D., Rixen, D.J., Voormeeren, S.N.: General framework for dynamic substructuring: history, review, and classification of techniques. AIAA J. 46(5), 1169–1181 (2008)

    Article  Google Scholar 

  2. Brunetti, J., Culla, A., D’Ambrogio, W., Fregolent, A.: Experimental dynamic substructuring of the Ampair wind turbine test bed. In: Conference Proceedings of the Society for Experimental Mechanics Series, vol. 1, pp. 15–26. Springer New York LLC (2014)

    Google Scholar 

  3. Craig, R. Jr.: Coupling of substructures for dynamic analyses-an overview. In: 41st Structures, Structural Dynamics, and Materials Conference and Exhibit, p. 1573 (2000)

    Google Scholar 

  4. Rixen, D.J.: A dual Craig-Bampton method for dynamic substructuring. J. Comput. Appl. Math. 168(1–2), 383–391 (2004)

    Article  MathSciNet  Google Scholar 

  5. Voormeeren, S.N., Rixen, D.J., A family of substructure decoupling techniques based on a dual assembly approach. Mech. Syst. Signal Process. 27, 379–396 (2012)

    Article  Google Scholar 

  6. D’Ambrogio, W., Fregolent, A., Decoupling procedures in the general framework of frequency based substructuring. In Proceedings of 27th IMAC. Orlando (USA) (2009)

    Google Scholar 

  7. Saeed, Z., Klaassen, S.W.B., Firrone, C.M., Berruti, T.M., Rixen, D.J.: Experimental joint identification using system equivalent model mixing in a bladed-disk. J. Vib. Acoust. 142(5), 1–29 (2020)

    Article  Google Scholar 

  8. Saeed, Z., Firrone, C.M., Berruti, T.M.: Joint identification through hybrid models improved by correlations. J. Sound Vib. 494, 115889 (2021)

    Article  Google Scholar 

  9. Kalaycioğlu, T., Özgüven, H.N.: Harmonic response of large engineering structures with nonlinear modifications. In Proceedings of the 8th International Conference on Structural Dynamics, EURODYN, pp. 3623–3629 (2011)

    Google Scholar 

  10. Kalaycıoğlu, T., Özgüven, H.N.: Nonlinear structural modification and nonlinear coupling. Mech. Syst. Signal Process. 46(2), 289–306 (2014)

    Article  Google Scholar 

  11. Kalaycıoğlu, T., Özgüven, H.N., FRF decoupling of nonlinear systems. Mech. Syst. Signal Process. 102, 230–244 (2018)

    Article  Google Scholar 

  12. Vander Velde, W.E., Multiple-Input Describing Functions and Nonlinear System Design. McGraw-Hill, New York (1968)

    MATH  Google Scholar 

  13. Kuether, R.J., Allen, M.S., Hollkamp, J.J.: Modal substructuring of geometrically nonlinear finite-element models. AIAA J. 54(2), 691–702 (2015)

    Article  Google Scholar 

  14. Hollkamp, J.J., Gordon, R.W., Spottswood, S.M.: Nonlinear modal models for sonic fatigue response prediction: a comparison of methods. Shock Vib. Digest 38(3), 232–233 (2006)

    Google Scholar 

  15. Kuether, R.J., Allen, M.S., Nonlinear modal substructuring of systems with geometric nonlinearities. In 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 1521 (2013)

    Google Scholar 

  16. Latini, F., Brunetti, J., Kwarta, M., Allen, M.S., D’Ambrogio, W., Fregolent, A.: Experimental results of nonlinear structure coupled through nonlinear connecting elements. In Proceedings of ISMA 2020 - International Conference on Noise and Vibration Engineering and USD 2020 - International Conference on Uncertainty in Structural Dynamics (2020)

    Google Scholar 

  17. Latini, F., Brunetti, J., D’Ambrogio, W., Allen, M.S., Fregolent, A.: Nonlinear substructuring in the modal domain: numerical validation and experimental verification in presence of localized nonlinearities. Nonlinear Dyn. 104(2), 1043–1067 (2021)

    Article  Google Scholar 

  18. Latini, F., Brunetti, J., D’Ambrogio, W., Fregolent, A.: Substructures’ coupling with nonlinear connecting elements. Nonlinear Dyn. 99(2), 1643–1658 (2020)

    Article  Google Scholar 

  19. Brunetti, J., D’Ambrogio, W., Fregolent, A., Latini, F.: Substructuring using NNMs of nonlinear connecting elements. In: Carcaterra, A., Paolone, A., Graziani, G. (eds.) Proceedings of XXIV AIMETA Conference 2019. AIMETA 2019. Lecture Notes in Mechanical Engineering. Springer (2020)

    Google Scholar 

  20. Brunetti, J., D’Ambrogio, W., Fregolent, A., Latini, F.: Dynamic substructuring using a combination of softening and hardening connecting elements. In Dynamic Substructures, vol. 4, pp. 23–33. Springer, Berlin (2022)

    Google Scholar 

  21. Kerschen, G., Peeters, M., Golinval, J., Vakakis, A.F.: Nonlinear normal modes, part i: a useful framework for the structural dynamicist. Mech. Syst. Signal Process. 23(1), 170–194 (2009)

    Article  Google Scholar 

  22. Peeters, M., Viguié, R., Sérandour, G., Kerschen, G., Golinval, J.: Nonlinear normal modes, part ii: toward a practical computation using numerical continuation techniques. Mech. Syst. Signal Process. 23(1), 195–216 (2009)

    Article  Google Scholar 

  23. Krack, M., Gross, J.: Harmonic Balance for Nonlinear Vibration Problems. Springer, Berlin (2019)

    Book  Google Scholar 

Download references

Acknowledgements

This research is supported by University of Rome La Sapienza and University of L’Aquila.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annalisa Fregolent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brunetti, J., D’Ambrogio, W., Fregolent, A., Latini, F. (2023). Accuracy of Nonlinear Substructuring Technique in the Modal Domain. In: Allen, M., D'Ambrogio, W., Roettgen, D. (eds) Dynamic Substructures, Volume 4. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-031-04094-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04094-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04093-1

  • Online ISBN: 978-3-031-04094-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics