Skip to main content

Entanglement Entropy in Critical Quantum Spin Chains with Boundaries and Defects

  • Chapter
  • First Online:
Entanglement in Spin Chains

Part of the book series: Quantum Science and Technology ((QST))

Abstract

Entanglement entropy (EE) in critical quantum spin chains described by 1+ 1D conformal field theories contains signatures of the universal characteristics of the field theory. Boundaries and defects in the spin chain give rise to universal contributions in the EE. In this work, we analyze these universal contributions for the critical Ising and XXZ spin chains for different conformal boundary conditions and defects. For the spin chains with boundaries, we use the boundary states for the corresponding continuum theories to compute the subleading contribution to the EE analytically and provide supporting numerical computation for the spin chains. Subsequently, we analyze the behavior of EE in the presence of conformal defects for the two spin chains and describe the change in both the leading logarithmic and subleading terms in the EE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Ref. [16] for discussion on different boundary conditions at the two ends.

  2. 2.

    Note that the open chain can be obtained from the periodic Ising chain by introducing an energy defect between the sites L and 1 with strength b𝜖 = 0.

References

  1. C. Holzhey, F. Larsen, F. Wilczek, Geometric and renormalized entropy in conformal field theory. Nucl. Phys. B 424, 443 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. P. Calabrese, J. Cardy, Entanglement entropy and quantum field theory. J. Stat. Mech: Theory Exp. 2004, P06002 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. H. Casini, Geometric entropy, area and strong subadditivity. Classical Quantum Gravity 21, 2351 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. H. Casini, M. Huerta, A c-theorem for the entanglement entropy. J. Phys. A 40, 7031 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  5. A.B. Zamolodchikov, Irreversibility of the flux of the renormalization group in a 2d field theory. JETP Lett. 43, 565 (1986)

    MathSciNet  Google Scholar 

  6. F. Pollmann, S. Mukerjee, A.M. Turner, J.E. Moore, Theory of finite-entanglement scaling at one-dimensional quantum critical points. Phys. Rev. Lett. 102, 255701 (2009)

    Article  ADS  Google Scholar 

  7. M.B. Hastings, An area law for one-dimensional quantum systems. J. Stat. Mech: Theory Exp. 2007, P08024 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. S.R. White, Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863 (1992)

    Article  ADS  Google Scholar 

  9. U. Schollwöck, The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 326, 96 (2011). January 2011 Special Issue

    Google Scholar 

  10. I. Affeck, A.W.W. Ludwig, Universal noninteger “ground-state degeneracy” in critical quantum systems. Phys. Rev. Lett. 67, 161 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. P. Calabrese, J. Cardy, Entanglement entropy and conformal field theory. J. Phys. A42, 504005 (2009)

    MathSciNet  MATH  Google Scholar 

  12. I. Affeck, Conformal field theory approach to the Kondo effect. Acta Phys. Polon. B 26, 1869 (1995)

    MathSciNet  Google Scholar 

  13. H. Saleur, Lectures on nonperturbative field theory and quantum impurity problems (1998)

    Google Scholar 

  14. M.R. Gaberdiel, Lectures on non-BPS Dirichlet branes. Class. Quant. Grav. 17, 3483 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. I. Affeck, N. Laflorencie, E.S. Sørensen, Entanglement entropy in quantum impurity systems and systems with boundaries. J. Phys. A Math. Theor. 42, 504009 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Cardy, E. Tonni, Entanglement Hamiltonians in two-dimensional conformal field theory. J. Stat. Mech: Theory Exp. 2016, 123103 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Roy, F. Pollmann, H. Saleur, Entanglement Hamiltonian of the 1+1-dimensional free, compactified boson conformal field theory. J. Stat. Mech. 2008, 083104 (2020)

    Article  MATH  Google Scholar 

  18. C. Bachas, J. de Boer, R. Dijkgraaf, H. Ooguri, Permeable conformal walls and holography. JHEP 06, 027 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  19. T. Quella, V. Schomerus, Symmetry breaking boundary states and defect lines. JHEP 06, 028 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  20. K. Sakai, Y. Satoh, Entanglement through conformal interfaces. JHEP 12, 001 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. V. Eisler, I. Peschel, Entanglement in fermionic chains with interface defects. Ann. Phys. 522, 679 (2010)

    MATH  Google Scholar 

  22. I. Peschel, V. Eisler, Exact results for the entanglement across defects in critical chains. J. Phys. A Math. Theor. 45, 155301 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. V.B. Petkova, J.B. Zuber, Generalized twisted partition functions. Phys. Lett. B 504, 157 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. J. Fröhlich, J. Fuchs, I. Runkel, C. Schweigert, Kramers-Wannier duality from conformal defects. Phys. Rev. Lett. 93, 070601 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  25. J. Fröhlich, J. Fuchs, I. Runkel, C. Schweigert, Duality and defects in rational conformal field theory. Nucl. Phys. B 763, 354 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. D. Aasen, R.S.K. Mong, P. Fendley, Topological defects on the lattice I: the Ising model. J. Phys. A 49, 354001 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. H.A. Kramers, G.H. Wannier, Statistics of the two-dimensional ferromagnet. Part I. Phys. Rev. 60, 252 (1941)

    ADS  MathSciNet  MATH  Google Scholar 

  28. R. Savit, Duality in field theory and statistical systems. Rev. Mod. Phys. 52, 453 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  29. M. Buican, A. Gromov, Anyonic chains, topological defects, and conformal field theory. Commun. Math. Phys. 356, 1017 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. I. Klich, D. Vaman, G. Wong, Entanglement Hamiltonians for chiral fermions with zero modes. Phys. Rev. Lett. 119, 120401 (2017)

    Article  ADS  Google Scholar 

  31. A. Roy, H. Saleur, Entanglement entropy in the Ising model with topological defects (2021)

    Google Scholar 

  32. E.M. Brehm, I. Brunner, Entanglement entropy through conformal interfaces in the 2D Ising model. JHEP 09, 080 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Gutperle, J.D. Miller, A note on entanglement entropy for topological interfaces in RCFTs, JHEP 04, 176 (2016)

    ADS  Google Scholar 

  34. N. Ishibashi, The boundary and crosscap states in conformal field theories. Mod. Phys. Lett. A 4, 251 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  35. J.L. Cardy, Boundary conditions, fusion rules and the Verlinde formula. Nucl. Phys. B 324, 581 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  36. G.Y. Cho, A.W.W. Ludwig, S. Ryu, Universal entanglement spectra of gapped one-dimensional field theories. Phys. Rev. B 95, 115122 (2017)

    Article  ADS  Google Scholar 

  37. A. Roy, D. Schuricht, J. Hauschild, F. Pollmann, H. Saleur, The quantum sine-Gordon model with quantum circuits. Nucl. Phys. B 968, 115445 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  38. P. Di Francesco, P. Mathieu, D. Sénéchal, Conformal Field Theory. Graduate Texts in Contemporary Physics (Springer, Berlin, 1997)

    Google Scholar 

  39. C.G. Callan Jr., C. Lovelace, C.R. Nappi, S.A. Yost, Adding holes and crosscaps to the superstring. Nucl. Phys. B 293, 83 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  40. M. Oshikawa, I. Affeck, Boundary conformal field theory approach to the critical two-dimensional Ising model with a defect line. Nucl. Phys. B 495, 533 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. S.L. Lukyanov, Low energy effective Hamiltonian for the XXZ spin chain. Nucl. Phys. B 522, 533 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. S. Lukyanov, Correlation amplitude for the XXZ spin chain in the disordered regime. Phys. Rev. B 59, 11163 (1999)

    Article  ADS  Google Scholar 

  43. S. Ghoshal, A. Zamolodchikov, Boundary S-matrix and boundary state in two-dimensional integrable quantum field theory. Int. J. Mod. Phys. A 09, 3841 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. P. Fendley, H. Saleur, N. Warner, Exact solution of a massless scalar field with a relevant boundary interaction. Nucl. Phys. B 430, 577 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. J.S. Caux, H. Saleur, F. Siano, The two-boundary sine-Gordon model. Nucl. Phys. B 672, 411 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. S. Lukyanov, V. Terras, Long-distance asymptotics of spin–spin correlation functions for the XXZ spin chain. Nucl. Phys. B 654, 323 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. J.L. Cardy, Continuously varying exponents and the value of the central charge. J. Phys. A Math. Gen. 20, L891 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  48. F. Iglói, I. Peschel, L. Turban, Inhomogeneous systems with unusual critical behaviour. Adv. Phys. 42, 683 (1993)

    Article  ADS  Google Scholar 

  49. L.P. Kadanoff, H. Ceva, Determination of an operator algebra for the two-dimensional Ising model. Phys. Rev. B 3, 3918 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  50. M. Henkel, A. Patkós, M. Schlottmann, The Ising quantum chain with defects (i). The exact solution. Nucl. Phys. 314, 609 (1989)

    Article  MathSciNet  Google Scholar 

  51. M. Baake, P. Chaselon, M. Schlottmann, The Ising quantum chain with defects (ii). The SO(2n) Kac-Moody spectra. Nucl. Phys. B 314, 625 (1989)

    Google Scholar 

  52. G. Vidal, J.I. Latorre, E. Rico, A. Kitaev, Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003)

    Article  ADS  Google Scholar 

  53. I. Peschel, Calculation of reduced density matrices from correlation functions. J. Phys. A Math. Gen. 36, L205 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. J.I. Latorre, E. Rico, G. Vidal, Ground state entanglement in quantum spin chains. Quantum Inf. Comput. 4, 48 (2004)

    MathSciNet  MATH  Google Scholar 

  55. F. Iglói, Z. Szatmári, Y.-C. Lin, Entanglement entropy with localized and extended interface defects. Phys. Rev. B 80, 024405 (2009)

    Article  ADS  Google Scholar 

  56. L. Lewin, Polylogarithms and Associated Functions (North Holland, Amsterdam, 1981)

    MATH  Google Scholar 

  57. U. Grimm, Spectrum of a duality twisted Ising quantum chain. J. Phys. A 35, L25 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. U. Grimm, G.M. Schutz, The spin-1/2 XXZ Heisenberg chain, the quantum algebra U(q)[sl(2)], and duality transformations for minimal models. J. Stat. Phys. 71, 921 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. C.P. Herzog, T. Nishioka, Entanglement entropy of a massive fermion on a torus. JHEP 03, 077 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. I. Affeck, M. Oshikawa, H. Saleur, Quantum Brownian motion on a triangular lattice and c=2 boundary conformal field theory. Nucl. Phys. B 594, 535 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  61. M. Goldstein, M.H. Devoret, M. Houzet, L.I. Glazman, Inelastic microwave photon scattering off a quantum impurity in a Josephson-junction array. Phys. Rev. Lett. 110, 017002 (2013)

    Article  ADS  Google Scholar 

  62. A. Roy, H. Saleur, Quantum electronic circuit simulation of generalized Sine-Gordon models. Phys. Rev. B 100, 155425 (2019)

    Article  ADS  Google Scholar 

  63. D. Pozar, Microwave Engineering. Addison-Wesley Series in Electrical and Computer Engineering (Addison-Wesley, Boston, 1990)

    Google Scholar 

  64. A.A. Clerk, M.H. Devoret, S.M. Girvin, F. Marquardt, R.J. Schoelkopf, Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. L. Amico, R. Fazio, A. Osterloh, V. Vedral, Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. H. Li, F.D.M. Haldane, Entanglement spectrum as a generalization of entanglement entropy: identification of topological order in non-Abelian fractional quantum Hall effect states. Phys. Rev. Lett. 101, 010504 (2008)

    Article  ADS  Google Scholar 

  67. R. Haag, Local Quantum Physics: Fields, Particles, Algebras. Theoretical and Mathematical Physics (Springer, Berlin, 2012)

    MATH  Google Scholar 

  68. H. Casini, M. Huerta, R.C. Myers, A. Yale, Mutual information and the F-theorem. JHEP 10, 003 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. H. Casini, I. Salazar Landea, G. Torroba, The g-theorem and quantum information theory. JHEP 10, 140 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. M. Mintchev, E. Tonni, Modular Hamiltonians for the massless Dirac field in the presence of a boundary. JHEP 03, 204 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. M. Mintchev, E. Tonni, Modular Hamiltonians for the massless Dirac field in the presence of a defect. JHEP 03, 205 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are particularly grateful to David Rogerson and Frank Pollmann for numerous discussions and collaboration on a related project. AR is supported by a grant from the Simons Foundation (825876, TDN). HS is supported by the ERC Advanced Grant NuQFT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ananda Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roy, A., Saleur, H. (2022). Entanglement Entropy in Critical Quantum Spin Chains with Boundaries and Defects. In: Bayat, A., Bose, S., Johannesson, H. (eds) Entanglement in Spin Chains. Quantum Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-03998-0_3

Download citation

Publish with us

Policies and ethics