Skip to main content

Comparison of Measurements Realized on Computed Tomograph and Optical Scanners for Elements Manufactured by Wire Arc Additive Manufacturing

  • Conference paper
  • First Online:
Book cover Advances in Manufacturing III (MANUFACTURING 2022)

Abstract

Additive techniques become more and more common in manufacturing processes. Among metallic materials an interesting technique for depositing metallic layers is the use of Wire Arc Additive Manufacturing process, where 3D metallic structures are created using welding technologies, i.e. Gas Metal Arc Welding. In the paper an analysis of measurement devices for surfaces after that kind of manufacturing was presented. A computer tomograph as well as two types of scanners were used, respectively with a high and low resolution. For dimensional measurements the results showed that a CT is a good option, enabling to properly represent the real work piece. The results obtained with a high resolution scanner were usually pretty close, except for few cases. On the other hand, a low resolution scanner due to a large distance between points was not able to show good dimensions. Pores in structures were also inspected. The biggest problems with pores occurred where path of a robotic arm was the most complicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shah, J., Snider, B., Clarke, T., Kozutsky, S., Lacki, M., Hosseini, A.: Large-scale 3D printers for additive manufacturing: design considerations and challenges. Int. J. Adv. Manuf. Technol. 104(9–12), 3679–3693 (2019). https://doi.org/10.1007/s00170-019-04074-6

    Article  Google Scholar 

  2. Sathies, T., Senthil, P., Anoop, M.S.: A review on advancements in applications of fused deposition modelling process. Rapid Prototyping J. 26(4), 669–687 (2020). https://doi.org/10.1108/RPJ-08-2018-0199

    Article  Google Scholar 

  3. Prater, T., Werkheiser, N., Ledbetter, F., Timucin, D., Wheeler, K., Snyder, M.: 3D Printing in zero G technology demonstration mission: complete experimental results and summary of related material modeling efforts. Int. J. Adv. Manuf. Technol. 101(1–4), 391–417 (2018). https://doi.org/10.1007/s00170-018-2827-7

    Article  Google Scholar 

  4. Rokicki, P., et al.: Rapid prototyping in manufacturing of core models of aircraft engine blades. Aircr. Eng. Aerosp. Technol. 86(4), 323–327 (2014). https://doi.org/10.1108/AEAT-10-2012-0192

    Article  MathSciNet  Google Scholar 

  5. Pisula, J.M., Budzik, G., Przeszłowski, Ł.: An analysis of the surface geometric structure and geometric accuracy of cylindrical gear teeth manufactured with the direct metal laser sintering (DMLS) method. Strojniški vestnik – J. Mech. Eng. 65(2), 78–86 (2018). https://doi.org/10.5545/sv-jme.2018.5614

  6. Śliwa, R.E., Bernaczek, J., Budzik, G.: The application of direct metal laser sintering (DMLS) of titanium alloy powder in fabricating components of aircraft structures. Key Eng. Mater. 687, 199–205 (2016). https://doi.org/10.4028/www.scientific.net/KEM.687.199

    Article  Google Scholar 

  7. Santos, E.C., Shiomi, M., Osakada, K., Laoui, T.: Rapid manufacturing of metal components by laser forming. Int. J. Mach. Tools Manuf. 46, 1459–1468 (2006)

    Article  Google Scholar 

  8. Wanjara, P., Brochu, M., Jahazi, M.: Electron beam freeforming of stainless steel using solid wire feed. Mater. Des. 28, 2278–2286 (2007)

    Article  Google Scholar 

  9. Ribeiro, F.: 3D printing with metals. Comput. Control Eng. J. 9(1), 31–38 (1998). https://doi.org/10.1049/cce:19980108

    Article  Google Scholar 

  10. Xia, C., et al.: A review on wire arc additive manufacturing: monitoring, control and a framework of automated system. J. Manuf. Syst. 57, 31–45 (2020). https://doi.org/10.1016/j.jmsy.2020.08.008

    Article  Google Scholar 

  11. González, J., Rodríguez, I., Prado-Cerqueira, J-L., Diéguez, J.L., Pereira, A.: Additive manufacturing with GMAW welding and CMT technology. Procedia Manuf. 13, 840–847 (2017). https://doi.org/10.1016/j.promfg.2017.09.189

  12. Ding, J., et al.: Thermo-mechanical analysis of Wire and Arc Additive Layer Manufacturing process on large multi-layer parts. Comput. Mater. Sci. 50(12), 3315–3322 (2011). https://doi.org/10.1016/j.commatsci.2011.06.023

    Article  Google Scholar 

  13. Spencer, J.D., Dickens, P.M., Wykes, C.M.: Rapid prototyping of metal parts by three-dimensional welding. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 212(3), 175–182 (1998)

    Article  Google Scholar 

  14. Clark, D., Bache, M.R., Whittaker, M.T.: Shaped metal deposition of a nickel alloy for aero engine applications. J. Mater. Process. Technol. 203, 439–448 (2008)

    Article  Google Scholar 

  15. Baufeld, B., Van der Biest, O., Gault, R.: Additive manufacturing of Ti–6Al–4V components by shaped metal deposition: microstructure and mechanical properties. Mater. Des. 31(1), 106-S111 (2010). https://doi.org/10.1016/j.matdes.2009.11.032

    Article  Google Scholar 

  16. Ibrahim, I.A., Mohamat, S.A., Amir, A., Ghalib, A.: The effect of gas metal arc welding (GMAW) processes on different welding parameters. Procedia Eng. 41, 1502–1506 (2012). https://doi.org/10.1016/j.proeng.2012.07.342

  17. Cao, Y., Zhu, S., Liang, X., Wang, W.: Overlapping model of beads and curve fitting of bead section for rapid manufacturing by robotic MAG welding process. Rob. Comput. Integr. Manuf. 27, 641–645 (2011)

    Article  Google Scholar 

  18. Leach, R., Thompson, A., Senin, N.: A metrology horror story: the additive surface. In: Proceedings of ASPEN/ASPE 2017 Spring Topical Meeting on Manufacture and Metrology of Structured and Freeform Surfaces for Functional Applications, 14–17 Hong Kong, China (2017)

    Google Scholar 

  19. Pagani, L., et al.: Towards a new definition of areal surface texture parameters on freeform surface: re-entrant features and functional parameters. Measurement 141, 442–459 (2019). https://doi.org/10.1016/j.measurement.2019.04.027

    Article  Google Scholar 

  20. Guerra, M.G., Gregersen, S.S., Frisvad, J.R., De Chiffre, L., Lavecchia, F., Galantucci, L.M.: Measurement of polymers with 3D optical scanners: evaluation of the subsurface scattering effect through five miniature step gauges. Meas. Sci. Technol. 31, 1 (2019). https://doi.org/10.1088/1361-6501/ab3edb

  21. Wieczorowski, M., Gapiński, B., Grzelka, M., Szostak, M., Szymański, M.: The use of photogrammetry in improving quality of workpieces after an injection molding process. Polymers 63(2), 134–144 (2018). https://doi.org/10.14314/polimery.2018.2.7

    Article  Google Scholar 

  22. Rękas, A., et al.: Analysis of tool geometry for the stamping process of large-size car body components using a 3D optical measurement system. Materials 14, 7608 (2021). https://doi.org/10.3390/ma14247608

    Article  Google Scholar 

  23. Affatato, S., Ruggiero, A., Logozzo, S.: Metal transfer evaluation on ceramic biocomponents: a protocol based on 3D scanners. Measurement 173, 108574 (2021). https://doi.org/10.1016/j.measurement.2020.108574

    Article  Google Scholar 

  24. Wieczorowski, M., Gapiński, B., Swojak, N.: The use of optical scanner for analysis of surface defects. In: Annals of DAAAM and Proceedings of the International DAAAM Symposium, vol. 30, no. 1, pp. 76–85 (2019). https://doi.org/10.2507/30th.daaam.proceedings.010

  25. Majchrowski, R., Grzelka, M., Wieczorowski, M., Sadowski, Ł, Gapiński, B.: Large area concrete surface topography measurements using optical 3D scanner. Metrol. Meas. Syst. 22(4), 565–576 (2015). https://doi.org/10.1515/mms-2015-0046

    Article  Google Scholar 

  26. Yazdanbakhsh, S.A., Mohaghegh, K., Tiedje, N.S., De Chiffre, L.: Traceability of optical 3D scanner measurements on sand mould in the production of quality castings. Meas. Sci. Technol. 32, 8 (2021). https://doi.org/10.1088/1361-6501/abf707

  27. Gapiński, B., et al.: Use of white light and laser 3D scanners for measurement of mesoscale surface asperities. In: Diering, M., Wieczorowski, M., Brown, C.A. (eds.) MANUFACTURING 2019. LNME, pp. 239–256. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18682-1_19

    Chapter  Google Scholar 

  28. Herráez, J., Martínez, J.C., Coll, E., Martín, M.T., Rodríguez, J.: 3D modeling by means of videogrammetry and laser scanners for reverse engineering. Measurement 87, 216–227 (2016). https://doi.org/10.1016/j.measurement.2016.03.005

    Article  Google Scholar 

  29. Lin, W., Shen, H., Fu, J., Wu, S.: Online quality monitoring in material extrusion additive manufacturing processes based on laser scanning technology. Precis. Eng. 60, 76–84 (2019). https://doi.org/10.1016/j.precisioneng.2019.06.004

    Article  Google Scholar 

  30. Swojak, N., Wieczorowski, M., Jakubowicz, M.: Assessment of selected metrological properties of laser triangulation sensors. Measurement 176, 109190 (2021). https://doi.org/10.1016/j.measurement.2021.109190

  31. Isa, M.A., Lazoglu, I.: Design and analysis of a 3D laser scanner. Measurement 111, 122–133 (2017). https://doi.org/10.1016/j.measurement.2017.07.028

    Article  Google Scholar 

  32. Blais, F., Beraldin, J.A.: Recent developments in 3D multi-modal laser imaging applied to cultural heritage. Mach. Vis. Appl. 17, 395–409 (2006). https://doi.org/10.1007/s00138-006-0025-3

    Article  Google Scholar 

  33. Hongyao, S., Jiaao, J., Bing, L., Zeyu, Z.: Measurement and evaluation of laser-scanned 3D profiles in wire arc hybrid manufacturing processes. Measurement 176, 109089 (2021). https://doi.org/10.1016/j.measurement.2021.109089

    Article  Google Scholar 

  34. Pavlenko, I., et al.: Parameter identification of cutting forces in crankshaft grinding using artificial neural networks. Materials 13, 5357 (2020). https://doi.org/10.3390/ma13235357

    Article  Google Scholar 

  35. Wieczorowski, M., Swojak, N., Pawlus, P., Pereira, A.: The use of drones in modern length and angle metrology. In: Śniatała, P., Iyengar, S.S., Bendarma, A., Klósak, M. (eds.) Modern Technologies Enabling Safe and Secure UAV Operation in Urban Airspace, pp. 125–140 (2021). IOS Press. https://doi.org/10.3233/NICSP210013

  36. Carmignato, S., Dewulf, W., Leach, R. (eds.): Industrial X-Ray Computed Tomography. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-59573-3

    Book  Google Scholar 

  37. Kruth, J.P., Bartscher, M., Carmignato, S., Schmitt, R., De Chiffre, L., Weckenmann, A.: Computed tomography for dimensional metrology. CIRP Ann. Manuf. Technol. 60, 821–842 (2011). https://doi.org/10.1016/j.cirp.2011.05.006

  38. Michael, G.: X-ray computed tomography. Phys. Educ. 36, 442–451 (2001)

    Article  Google Scholar 

  39. Gapiński, B., Wieczorowski, M., Grzelka, M., Alonso, P.A., Tomé, A.B.: The application of micro computed tomography to assess quality of parts manufactured by means of rapid prototyping. Polymers 62(1), 53–59 (2017). https://doi.org/10.14314/polimery.2017.053

    Article  Google Scholar 

  40. Gapiński, B., Wieczorowski, M., Swojak, N., Szymański, M.: Geometrical structure analysis of combustible and non-combustible foams by computed tomography. J. Phys. Conf. Ser. 1065(14) (2018). Art. no. 142025. https://doi.org/10.1088/1742-6596/1065/14/142025

  41. Townsend, A., Pagani, L., Scott, P., Blunt, L.: Areal surface texture data extraction from X-ray computed tomography reconstructions of metal additively manufactured parts. Precis. Eng. 48, 254–264 (2017). https://doi.org/10.1016/j.precisioneng.2016.12.008

    Article  Google Scholar 

  42. Romano, S., Abel, A., Gumpinger, J., Brandao, A.D., Beretta, S.: Quality control of AlSi10Mg produced by SLM: metallography versus CT scans for critical defect size assessment. Addit. Manuf. 28, 394–405 (2019). https://doi.org/10.1016/j.addma.2019.05.017

    Article  Google Scholar 

  43. Hiller, J., Maisl, M., Reindl, L.M.: Physical characterization and performance evaluation of an x-ray micro-computed tomography system for dimensional metrology applications. Meas. Sci. Technol. 23, 8 (2012). https://doi.org/10.1088/0957-0233/23/8/085404

  44. Gapiński, B., Wieczorowski, M., Marciniak-Podsadna, L., Dybala, B., Ziolkowski, G.: Comparison of different methods of measurement geometry using CMM. Opt. Scanner Comput. Tomogr. 3D Procedia Eng. 69, 255–262 (2014). https://doi.org/10.1016/j.proeng.2014.02.230

Download references

Acknowledgments

This research was funded by the Polish Ministry of Higher Education grants No. 0614/SBAD/1547.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartosz Gapiński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wieczorowski, M., Yago, I.P., Alejandro, P.D., Gapiński, B., Budzik, G., Diering, M. (2022). Comparison of Measurements Realized on Computed Tomograph and Optical Scanners for Elements Manufactured by Wire Arc Additive Manufacturing. In: Diering, M., Wieczorowski, M., Harugade, M., Pereira, A. (eds) Advances in Manufacturing III. MANUFACTURING 2022. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-03925-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-03925-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-03924-9

  • Online ISBN: 978-3-031-03925-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics