Skip to main content

Influence of Ultrasonication on the Properties of Hybrid Electrospun Polyacrylonitrile and Silver Nanoparticles Fibers and Their Potential Use in Water Decontamination

  • Conference paper
  • First Online:
Applied Technologies (ICAT 2021)

Abstract

The fabrication of hybrid polymer-based membranes with nanoparticles (NPs) has drawn great attention because they combine the intrinsic NPs properties with those from the polymer fibers to enhance the performance of the final membrane. Silver nanoparticles (AgNPs) are one of the most used. In this work, it is reported an approach to fabricate hybrid polyacrylonitrile (PAN) electrospun fibers decorated with silver nanoparticles (AgNPs). We evaluate the influence of ultrasonication on the structure and properties of the fibers. Nanoparticles and nanocomposites were characterized by Rheology, X-ray Diffraction (XRD), and Electron Microscopy. The nanoparticle diameters and distribution assessment were elucidated via electron microscopy analysis and demonstrate the efficiency of sonication during fibers processing. PAN/AgNPs composite fiber membranes were evaluated to filtrate microorganisms in natural hydric sources. The results show that PAN/AgNPs composite membranes inhibit Gram-negative and fungi microorganisms but showed less efficacy for Gram-positive bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hulla, J., Sahu, S., Hayes, A.: Nanotechnology: history and future. Hum. Exp. Toxicol. 34(12), 1318–1321 (2015). https://doi.org/10.1177/0960327115603588

    Article  Google Scholar 

  2. Müller, K., et al.: Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields. Nanomaterials 7(4), 74 (2017). https://doi.org/10.3390/nano7040074

  3. Kolahalam, L.A., Kasi Viswanath, I.V., Diwakar, B.S., Govindh, B., Reddy, V., Murthy, Y.L.N.: Review on nanomaterials: synthesis and applications. Mater. Today Proc. 18, 2182–2190 (2019). https://doi.org/10.1016/j.matpr.2019.07.371

    Article  Google Scholar 

  4. Li, R., Zhang, L., Wang, P.: Rational design of nanomaterials for water treatment. Nanoscale 7(41), 17167–17194 (2015). https://doi.org/10.1039/C5NR04870B

    Article  Google Scholar 

  5. Lu, H., Wang, J., Stoller, M., Wang, T., Bao, Y., Hao, H.: An overview of nanomaterials for water and wastewater treatment. Adv. Mater. Sci. Eng. 2016, 1 (2016). https://doi.org/10.1155/2016/4964828

    Article  Google Scholar 

  6. Tlili, I., Alkanhal, T.A.: Nanotechnology for water purification: electrospun nanofibrous membrane in water and wastewater treatment. J. Water Reuse Desalin. 9(3), 232–248 (2019). https://doi.org/10.2166/wrd.2019.057

    Article  Google Scholar 

  7. Hu, T.Y., Frieman, M., Wolfram, J.: Insights from nanomedicine into chloroquine efficacy against COVID-19. Nat. Nanotechnol. (2020). https://doi.org/10.1038/s41565-020-0674-9

    Article  Google Scholar 

  8. Schummer, J.: Multidisciplinarity, interdisciplinarity, and patterns of research collaboration in nanoscience and nanotechnology. Scientometrics 59(3), 425–465 (2004). https://doi.org/10.1023/B:SCIE.0000018542.71314.38

    Article  Google Scholar 

  9. Akpan, E.I., Shen, X., Wetzel, B., Friedrich, K.: Design and synthesis of polymer nanocomposites. In: Polymer Composites with Functionalized Nanoparticles, pp. 47–83. Elsevier (2019). https://doi.org/10.1016/B978-0-12-814064-2.00002-0

  10. Torres-Canas, F.J., Blanc, C., Zamora-Ledezma, C., Silva, P., Anglaret, E.: Dispersion and individualization of SWNT in surfactant-free suspensions and composites of hydrosoluble polymers. J. Phys. Chem. C 119(1), 703–709 (2015). https://doi.org/10.1021/jp5092015

    Article  Google Scholar 

  11. Huang, Z.-M., Zhang, Y.-Z., Kotaki, M., Ramakrishna, S.: A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63(15), 2223–2253 (2003). https://doi.org/10.1016/S0266-3538(03)00178-7

    Article  Google Scholar 

  12. Teo, W.E., Ramakrishna, S.: A review on electrospinning design and nanofibre assemblies. Nanotechnology 17(14), R89–R106 (2006). https://doi.org/10.1088/0957-4484/17/14/R01

    Article  Google Scholar 

  13. Xue, J., Xie, J., Liu, W., Xia, Y.: Electrospun nanofibers: new concepts, materials, and applications. Acc. Chem. Res. 50(8), 1976–1987 (2017). https://doi.org/10.1021/acs.accounts.7b00218

    Article  Google Scholar 

  14. Han, J., Xiong, L., Jiang, X., Yuan, X., Zhao, Y., Yang, D.: BioFunctional electrospun nanomaterials: from topology design to biological applications. Prog. Polym. Sci. 91, 1–28 (2019). https://doi.org/10.1016/j.progpolymsci.2019.02.006

    Article  Google Scholar 

  15. Narvaez-Muñ˜oz, C.P., et al.: Tailoring organic poly(vinylpyrrolidone) microparticles and fibers with multiwalled carbon nanotubes for reinforced composites. ACS Appl. Nano Mater. 2(7), 4302–4312 (2019). https://doi.org/10.1021/acsanm.9b00758

  16. Gehrke, I., Somborn-schulz, A.: Innovations in nanotechnology for water treatment. Nanotechnol. Sci. Appl. 8, 1–17 (2015)

    Article  Google Scholar 

  17. Ray, S.S., Chen, S.-S., Li, C.-W., Nguyen, N.C., Nguyen, H.T.: A comprehensive review: electrospinning technique for fabrication and surface modification of membranes for water treatment application. RSC Adv. 6(88), 85495–85514 (2016). https://doi.org/10.1039/C6RA14952A

    Article  Google Scholar 

  18. Qu, X., Alvarez, P.J.J., Li, Q.: Applications of nanotechnology in water and wastewater treatment. Water Res. 47(12), 3931–3946 (2013). https://doi.org/10.1016/j.watres.2012.09.058

    Article  Google Scholar 

  19. Kenry, Lim, C.T.: Nanofiber technology: current status and emerging developments. Prog. Polymer Sci. 70, 1–17 (2017). https://doi.org/10.1016/j.progpolymsci.2017.03.002

  20. WHO, UNICEF: Progress on Drinking Water, Sanitation and Hygiene (2017)

    Google Scholar 

  21. Jiang, H., Wu, C., Zhang, A., Yang, P.: Structural characteristics of polyacrylonitrile (PAN) fibers during oxidative stabilization. Compos. Sci. Technol. 29(1), 33–44 (1987). https://doi.org/10.1016/0266-3538(87)90035-2

    Article  Google Scholar 

  22. Wang, Y., et al.: Preparation of silver nanoparticles dispersed in polyacrylonitrile nanofiber film spun by electrospinning. Mater. Lett. 59(24–25), 3046–3049 (2005). https://doi.org/10.1016/j.matlet.2005.05.016

    Article  Google Scholar 

  23. Yu, D.-G., Zhou, J., Chatterton, N.P., Li, Y., Huang, J., Wang, X.: Polyacrylonitrile nanofibers coated with silver nanoparticles using a modified coaxial electrospinning process. IJN 5725 (2012). https://doi.org/10.2147/IJN.S37455

  24. Galdiero, S., Falanga, A., Vitiello, M., Cantisani, M., Marra, V., Galdiero, M.: Silver nanoparticles as potential antiviral agents. Molecules 16(10), 8894–8918 (2011). https://doi.org/10.3390/molecules16108894

    Article  Google Scholar 

  25. Parekh, S., David, R., Bannuru, K., Krishnaswamy, L., Baji, A.: Electrospun silver coated polyacrylonitrile membranes for water filtration applications. Membranes 8(3), 59 (2018). https://doi.org/10.3390/membranes8030059

  26. Wang, Y., et al.: Preparation of silver nanoparticles dispersed in polyacrylonitrile nanofiber film spun by electrospinning. Mater. Lett. 59(24(25)), 3046–3049 (2005). https://doi.org/10.1016/j.matlet.2005.05.016

  27. Pradhan, S., Hedberg, J., Blomberg, E., Wold, S., Odnevall Wallinder, I.: Effect of sonication on particle dispersion, administered dose and metal release of non-functionalized, non-inert metal nanoparticles. J. Nanopart. Res. 18(9), 1–14 (2016). https://doi.org/10.1007/s11051-016-3597-5

    Article  Google Scholar 

  28. Nguyen, V.S., Rouxel, D., Vincent, B.: Dispersion of nanoparticles: from organic solvents to polymer solutions. Ultrason. Sonochem. 21(1), 149–153 (2014). https://doi.org/10.1016/j.ultsonch.2013.07.015

    Article  Google Scholar 

  29. Henrist, C., Mathieu, J.-P., Vogels, C., Rulmont, A., Cloots, R.: Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution. J. Crystal Growth 249(1(2)), 321–330 (2003). https://doi.org/10.1016/S0022-0248(02)02068-7

  30. Lin, H.-W., Hwu, W.-H., Ger, M.-D.: The dispersion of silver nanoparticles with physical dispersal procedures. J. Mater. Process. Technol. 206(1(3)), 56–61 (2008). https://doi.org/10.1016/j.jmatprotec.2007.12.025

  31. Bittmann, B., Haupert, F., Schlarb, A.K.: Ultrasonic dispersion of inorganic nanoparticles in epoxy resin. Ultrason. Sonochem. 16(5), 622–628 (2009). https://doi.org/10.1016/j.ultsonch.2009.01.006

    Article  Google Scholar 

  32. Dickson, D., Liu, G., Li, C., Tachiev, G., Cai, Y.: Dispersion and stability of bare hematite nanoparticles: effect of dispersion tools, nanoparticle concentration, humic acid and ionic strength. Sci. Total Environ. 419, 170–177 (2012). https://doi.org/10.1016/j.scitotenv.2012.01.012

    Article  Google Scholar 

  33. USEPA. Method 1604: Total Coliforms and Escherichia Coli in Water by Membrane Filtration Using a Simultaneous Detection Technique (MI Medium). Standard Methods, 18 September 2002. EPA-821-R-02-024

    Google Scholar 

  34. Parekh, S.A., David, R.N., Bannuru, K.K.R., Krishnaswamy, L., Baji, A.: Electro-spun silver coated polyacrylonitrile membranes for water filtration applications. Membranes 8(3), 26–29 (2018). https://doi.org/10.3390/membranes8030059

    Article  Google Scholar 

  35. APHA-AWWA-WEF. 9221 A-C Multiple-Tube Fermentation Technique for Members of the Coliform Group, 9221D Presence-Absence Coliform Test 9221 E FecaColiform Procedure. Standar Methods for the Examination of Water and Wastewater, 20th Edition, pp. 47–56 (2002)

    Google Scholar 

  36. Fricker, C.R., Bullock, S., Murrin, K., Niemela, S.I.: Use of the ISO 9308-1 procedure for the detection of E. Coli in water utilizing two incubation temperatures and two confirmation procedures and comparison with defined substrate technology. J. Water Health 6(3), 389–397 (2008). https://doi.org/10.2166/wh.2008.049

  37. Tortorello, M.L.: Indicator organisms for safety and quality-uses and methods for detection: minireview. J. AOAC Int. 86(6), 1208–1217 (2003)

    Article  Google Scholar 

  38. Creger, P.E., Blankenship, J.R.: Analysis of gene expression in filamentous cells of candida albicans grown on agar plates. J. Biol. Methods 5(1), 84 (2018). https://doi.org/10.14440/jbm.2018.211

  39. Jyoti, K., Baunthiyal, M., Singh, A.: Characterization of silver nanoparticles synthesized using Urtica dioica Linn. Leaves and their synergistic effects with antibiotics. J. Radiat. Res. Appl. Sci. 9(3), 217–227 (2016). https://doi.org/10.1016/j.jrras.2015.10.002

    Article  Google Scholar 

  40. Saud, P.S., et al.: Photocatalytic degradation and antibacterial investigation of nano synthesized Ag3VO4 particles @PAN nanofibers. Carbon Lett. 18, 30–36 (2016). https://doi.org/10.5714/CL.2016.18.030

    Article  Google Scholar 

  41. Yang, W., Li, L., Wang, S., Liu, J.: Preparation of multifunctional Ag-NPs/PAN nanofiber membrane for air filtration by one-step process. Pigment Resin Technology (2020)

    Google Scholar 

  42. Taurozzi, J.S., Hackley, V.A., Wiesner, M.R.: Ultrasonic dispersion of nanoparticles for environmental, health and safety assessment-issues and recommendations. Nanotoxicology 5(4), 711–729 (2011)

    Article  Google Scholar 

  43. Skandalis, N., et al.: The effect of silver nanoparticles size, produced using plant extract from Arbutus unedo, on their antibacterial efficacy. Nanomaterials 7(7), 178 (2017)

    Article  Google Scholar 

  44. Narvaez-Muñoz, C., Ryzhakov, P., Pons-Prats, J.: Determination of the operational parameters for the manufacturing of spherical PVP particles via electrospray. Polymers 13(4), 529 (2021)

    Article  Google Scholar 

  45. Zamora-Ledezma, C., Negrete-Bolagay, D., Figueroa, F., Zamora-Ledezma, E., Ni, M., Guerrero, F.A.V.H.: Heavy metal water pollution: a fresh look about hazards, novel and conventional remediation methods. Environ. Technol. Innov. 22, 101504 (2021)

    Article  Google Scholar 

  46. Castro, C.M.J., Puig, R., Zamora-Ledezma, C., Ledezma, E.Z.: Caracterización preliminar de la ceniza de cáscara de arroz de la provincia Manabí, Ecuador, para su empleo en hormigones. Revista Técnica de la Facultad de Ingeniería Universidad del Zulia 44(1), 44–50

    Google Scholar 

Download references

Acknowledgment

This work was supported by a) the research project PIC-16-BENS-002, ENSAM- BLE scholarship program of the SENESCYT, b) the research project “Ecotoxicological evaluations of materials with potential agricultural and environmental use” financed by the Universidad Técnica de Manabí in the 2019 internal call, and c) the research project “Nanofertilizers in soil and nitrous oxide emissions” (ID475) financed by FONTAGRO in the 2020 call.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis M. Carrión-Matamoros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Narváez-Muñoz, C. et al. (2022). Influence of Ultrasonication on the Properties of Hybrid Electrospun Polyacrylonitrile and Silver Nanoparticles Fibers and Their Potential Use in Water Decontamination. In: Botto-Tobar, M., Montes León, S., Torres-Carrión, P., Zambrano Vizuete, M., Durakovic, B. (eds) Applied Technologies. ICAT 2021. Communications in Computer and Information Science, vol 1535. Springer, Cham. https://doi.org/10.1007/978-3-031-03884-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-03884-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-03883-9

  • Online ISBN: 978-3-031-03884-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics