Skip to main content

Electromagnetic Properties and the Basis for CDI, MREIT, and EPT

  • Chapter
  • First Online:
Electrical Properties of Tissues

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1380))

  • 569 Accesses

Abstract

The electromagnetic properties of body tissues depend on numerous factors, the most important of which are ionic concentrations and, particularly in the low-frequency regime, membrane density and geometry. In this chapter, the characteristics of these properties and their spectra are introduced. The properties measured by different types of MR-based methods are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://niremf.ifac.cnr.it/tissprop/.

  2. 2.

    https://itis.swiss/virtual-population/tissue-properties/database/.

References

  1. D. Holder (ed.) Electrical Impedance Tomography (CRC Press, Boca Raton, 2005), pp. 195–249. ISBN: 9780750309523

    Google Scholar 

  2. K.Y. Aristovich, B.C. Packham, H. Koo, G.S. dos Santos, A. McEvoy, D. Holder, Imaging fast elecrical activity in the brain with electrical impedance tomography. NeuroImage 124, 204–213 (2016)

    Article  PubMed  Google Scholar 

  3. M. Chauhan, A. Indahlastari, A.K. Kasinadhuni, M. Schär, T.H. Mareci, R.J. Sadleir, Low-frequency conductivity tensor imaging of the human head in vivo using DT-MREIT: first study. IEEE Trans. Med. Imag. 37(4), 966–976 (2018)

    Article  Google Scholar 

  4. T.J.C. Faes, H.A. van der Meij, J.C. de Munck, R.M. Heethaar, The electric resistivity of human tissues (100 Hz–10 MHz): a meta-analysis of review studies. Physiol. Measur. 20, R1–R10 (1999)

    Article  CAS  Google Scholar 

  5. H. Fricke, Theory of electrical polarization. Philos. Mag. 14(90), 310–318 (1932)

    Article  CAS  Google Scholar 

  6. C. Gabriel, T.Y.A. Chan, E.H. Grant, Admittance models for open ended coaxial probes and their place in dielectric spectroscopy. Phys. Med. Biol. 39, 2183–2200 (1994)

    Article  CAS  PubMed  Google Scholar 

  7. C. Gabriel, S. Gabriel, E. Corthout, The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol. 41, 2231–2249 (1996)

    Article  CAS  PubMed  Google Scholar 

  8. S. Gabriel, R.W. Lau, C. Gabriel, The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 41, 2251–2269 (1996)

    Google Scholar 

  9. S. Gabriel, R.W. Lau, C. Gabriel, The dielectric properties of biological tissues: III Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 41, 2271–2293 (1996)

    Article  CAS  PubMed  Google Scholar 

  10. L.A. Geddes, Electrodes and the Measurement of Bioelectric Events (Wiley, New York, 1972)

    Google Scholar 

  11. O. Gilad, D. Holder, Impedance changes recorded with scalp electrodes during visual evoked responses: implications for electrical impedance tomography of fast neural activity. NeuroImage 47, 514–522 (2009)

    Article  CAS  PubMed  Google Scholar 

  12. S. Grimnes, O.G. Martinsen, Bioimpedance & Bioelectricity Basics, 1st edn. (Academic Press, London, 2000)

    Google Scholar 

  13. W.M. Haynes, D.R. Lide, T.J. Bruno, CRC Handbook of Chemistry and Physics, 95th edn. (CRC Press, Boca Raton, 2014)

    Book  Google Scholar 

  14. A.L. Hodgkin, A.F. Huxley, A quantitative description of ion currents and its applications to conductance and excitation in nerve membranes. J. Physiol. 117, 500–544 (1952)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. P. Hua, E.J. Woo, J.G. Webster, W.J. Tompkins, Finite element modeling of electrode-skin contact impedance in electrical impedance tomography. IEEE Trans. Biomed. Eng. 40, 335–343 (1993)

    Article  CAS  PubMed  Google Scholar 

  16. A.K. Kasinadhuni, A. Indahlastari, M. Chauhan, M. Schär, T.H. Mareci, R.J. Sadleir, Imaging of current flow in the human head during transcranial electrical therapy. Brain Stimul. 10(4), 764–772 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. N. Katoch, B.K. Choi, S.Z.K. Sajib, E. Lee, H.J. Kim, O.I. Kwon, E.J. Woo, Conductivity tensor imaging of in vivo human brain and experimental validation using giant vesicle suspension. IEEE Trans. Med. Imag. 38, 1569–1577 (2019)

    Article  Google Scholar 

  18. O. Kwon, W.C. Jeong, S.Z. K. Sajib, H.J. Kim, E.J. Woo, Anisotropic conductivity tensor imaging in MREIT using directional diffusion rate of water molecules. Phys. Med. Biol. 59, 2955–2974 (2014)

    Article  PubMed  Google Scholar 

  19. X. Li, K. Yu, B. He, Magnetoacoustic tomography with magnetic induction (MAT-MI) for imaging electrical conductivity of biological tissue: a tutorial review. Phys. Med. Biol. 61(18), R249–R270 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. A. Liston, R. Bayford, D. Holder, A cable theory based biophysical model of resistance change in crab peripheral nerve and human cerebral cortex during neuronal depolarisation: implications for electrical impedance tomography of fast neural activity in the brain. Med. Biol. Eng. Comput. 50, 425–437 (2012)

    Article  PubMed  Google Scholar 

  21. L. Ma, M. Soleimani, Magnetic induction tomography methods and applications: a review. Measurement Science and Technology 28(7), 072001 (2017)

    Google Scholar 

  22. J. Malmivuo, R. Plonsey, Bioelectromagnetism - Principles and Applications of Bioelectric and Biomagnetic Fields, 1st edn. (Oxford University Press, New York, 1995)

    Book  Google Scholar 

  23. O.G. Martinsen, S. Grimnes, P. Mirtaheri, Non-invasive measurements of post-mortem changes in dielectric properties of haddock muscle - a pilot study. J. Food Eng. 43, 189–192 (2000)

    Article  Google Scholar 

  24. A. Peyman, C. Gabriel, E.H. Grant, Complex permittivity of sodium chloride solutions at microwave frequencies. Bioelectromagnetics 28, 264–274 (2007)

    Article  CAS  PubMed  Google Scholar 

  25. R.J. Sadleir, A. Argibay, Modeling skull electrical properties. Ann. Biomed. Eng. 35(10), 1699–1712 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. R.J. Sadleir, F. Fu, C. Falgas, S.K. Holland, M. Boggess, S.C. Grant, E.J. Woo, Direct detection of neural activity in vitro using magnetic resonance electrical impedance tomography (MREIT). NeuroImage 161, 104–119 (2017)

    Article  PubMed  Google Scholar 

  27. R.J. Sadleir, F. Fu, M. Chauhan, Functional magnetic resonance electrical impedance tomography (fMREIT) sensitivity analysis using an active bidomain finite element model of neural tissue. Magnetic Resonance in Medicine 81, 602–614 (2019)

    Article  PubMed  Google Scholar 

  28. J.K. Seo, E.J. Woo, U. Katscher, Y. Wang, Electro-Magnetic Tissue Properties MRI (Imperial College Press, London, 2014)

    Book  Google Scholar 

  29. I. Tarotin, K.Y. Aristovich, D. Holder, Effect of dispersion in nerve on compound action potential and impedance change: a modelling study. Physiol. Measur. 40, 034001 (2019)

    Article  Google Scholar 

  30. I. Tarotin, K.Y. Aristovich, D. Holder, Model of impedance changes in unmyelinated nerve fibers. IEEE Trans. Biomed. Eng. 66(2), 471–484 (2019)

    Article  PubMed  Google Scholar 

  31. K. Tha, U. Katscher, S. Yamaguchi, C. Stehning, S. Terasaka, N. Fujima, K. Kudo, K. Kazumata, T. Yamamoto, M. Van Cauteren, H. Shirato, Noninvasive electrical conductivity measurement by mri: a test of its validity and the electrical conductivity characteristics of glioma. Eur. Radiol. 28, 348–355 (2017)

    Article  PubMed  Google Scholar 

  32. D.S. Tuch, V.J. Wedeen, A.M. Dale, J.S. George, J.W. Belliveau, Conductivity tensor mapping of the human brain using diffusion tensor MRI. Proc. Natl. Acad. Sci. 98, 111697–701 (2001)

    Article  Google Scholar 

  33. A.N. Vongerichten, G.S. dos Santos, K.Y. Aristovich, J. Avery, A. McEvoy, M. Walker, D. Holder, Characterisation and imaging of cortical impedance changes during interictal and ictal activity in the anaesthetised rat. NeuroImage 124, 813–823 (2016)

    Article  PubMed  Google Scholar 

  34. Y. Wang, P. Spincemaille, Z. Liu, A. Dimov, K. Deh, J. Li, Y. Zhang, Y. Yao, K.M. Gillen, A.H. Wilman, A. Gupta, A.J. Tsiouris, I. Kovanlikaya, G.C.-Y. Chiang, J.W. Weinsaft, L. Tanenbaum, W. Chen, W. Zhu, S.-Y. Chang, M. Lou, B.H. Kopell, M.G. Kaplitt, D. Devos, T. Hirai, X. Huang, Y. Korogi, A. Shtiilbans, G.-H. Jahng, D. Pelletier, S.A. Gauthier, D. Pitt, A.I. Bush, G.M. Brittenham, M.R. Prince, Clinical quantitative susceptibility mapping (QSM): biometal imaging and its emerging roles in patient care. Journal of Magnetic Resonance Imaging 46, 951–971 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosalind Sadleir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sadleir, R., Gabriel, C., Minhas, A.S. (2022). Electromagnetic Properties and the Basis for CDI, MREIT, and EPT. In: Sadleir, R., Minhas, A.S. (eds) Electrical Properties of Tissues. Advances in Experimental Medicine and Biology, vol 1380. Springer, Cham. https://doi.org/10.1007/978-3-031-03873-0_1

Download citation

Publish with us

Policies and ethics