Skip to main content

Using Köppen Climate Classification Like Diagnostic Tool to Quantify Climate Variation in Lower Danube Valley for the Period 1961–2017

  • Chapter
  • First Online:
The Lower Danube River

Part of the book series: Earth and Environmental Sciences Library ((EESL))

  • 204 Accesses

Abstract

This chapter present climate condition in Lower Danube Valley in North Bulgaria. It used average monthly and average annual data on air temperature and precipitation from 10 meteorological stations located evenly on the study territory. In order to reveal the dynamics of climate change, are data calculated 30-year, 20-year, 10-year moving averages, which determined the affiliation to climate types according to the Köppen classification. The climatic types for each individual year are also calculated. The results reveals of dry steppe climate (BSk) in the eastern and central parts of the study area for some of the years. The presence of Mediterranean influence has been registered, which is defined by the Csa and Csb indices. At the same time, the Mediterranean influence is not revealed when use the 30- and 20- years moving average. When use 10- year moving average the presence of Mediterranean influence is established in only 2 stations for the period in second half of 80’s and first half of 90’s of the twentieth century. According to the 10-year moving averages in the Knezha region, we register a continental climate with a cold winter (Dfa) for the period of the 60s and early 70s. According to Annual Climate Type (ACT) study area is under Potential Aridity Condition (PAC) for half of study period.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Köppen W (1900) Versuch einer Klassifikation der Klimate, vorzugweise nach ihren Beziehungen zur Pflanzenwelt. Geogr Z 6:657–679

    Google Scholar 

  2. Köppen W (1901) Versuch einer Klassifikation der Klimate, vorzugweise nach ihren Beziehungen zur Pflanzenwelt. Meteorol Z 18:106–120

    Google Scholar 

  3. De Martonne E (1942) Nouvelle carte mondiale de l’indice d’aridité. Ann Géogr 51(288):241–250

    Article  Google Scholar 

  4. Viers G (1968) Éléments de climatologie. Nathan, Paris

    Google Scholar 

  5. Alissow BP (1954) Die Klimate der Erde. Deutch, Ubers, Berlin

    Google Scholar 

  6. Pédelaborde P (1957) Le climat du bassin Parisien – Essai d’une méthode rationnelle de climatologie physique. Génin, Paris

    Google Scholar 

  7. Flohn H (1969) Climate and weather. World Univ, Library, McGraw-Hill, New York

    Google Scholar 

  8. Péguy CP (1970) Précis de climatologie. Masson, Paris

    Google Scholar 

  9. Lamb HH (1977) Climate: present, past, and future, vol 2. Climatic history and the future. Methuen & Co Ltd., London

    Google Scholar 

  10. Sanderson M (1999) The classification of climates from Pythagoras to Koeppen. Bull Amer Meteor Soc 80:669–673

    Article  Google Scholar 

  11. Dubreuil V, Fante KP, Planchon O, Neto JLS (2017) Les types de climats annuels au Brésil : une application de la classification de Köppen de 1961 à 2015. EchoGéo 41:1–27

    Google Scholar 

  12. Thornthwaite CW (1933) The climates of the earth. Geogr Rev 23:433–440

    Article  Google Scholar 

  13. Trewartha GT (1937) An introduction to weather and climate. McGraw-Hill Book Company, New York

    Google Scholar 

  14. Hantel M (1989) Climatology, series Landolt-Bцrnstein, numerical data and functional relationships in science and technology. new series, vol 4C2, The present global surface climate, Springer, Berlin, pp 117–474

    Google Scholar 

  15. Essenwanger OM (2001) Classification of climates, world survey of climatology 1C, general climatology. Elsevier, Amsterdam

    Google Scholar 

  16. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644

    Article  Google Scholar 

  17. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15:259–263

    Article  Google Scholar 

  18. Rubel F, Kottek M (2010) Observed and projected climate shifts 1901–2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorol Z 19:135–141

    Article  Google Scholar 

  19. Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF (2018) Present and future Köppen-Geiger climate classification maps at 1-km resolution. SCIENTIFIC DATA, 5:180214, https://doi.org/10.1038/sdata.2018.214 https://www.nature.com/articles/sdata2018214.pdf

  20. Allam A, Moussa R, Najem W, Bocquillon C (2019). Mediterranean specific climate classification and future evolution under RCP scenarios. https://doi.org/10.5194/hess-2019-381

    Article  Google Scholar 

  21. Gallardo C, Gil V, Hagel E, Tejeda C, de Castro M (2013) Assessment of climate change in Europe from an ensemble of regional climate models by the use of Köppen – Trewartha classification. Int J Climatol 33:2157–2166

    Article  Google Scholar 

  22. Lohmann U, Sausen R, Bengtsson L, Cubasch U, Perlwitz J, Roeckner E (1993) The Koppen climate classification as a diagnostic tool for general circulation models. Clim Res 3:177–193

    Article  Google Scholar 

  23. Chen D, Chen HW (2013) Using the Köppen classification to quantify climate variation and change: an example for 1901–2010. Environ Dev 6:69–79. https://doi.org/10.1016/j.envdev.2013.03.007

    Article  Google Scholar 

  24. Brisse H, Grandjouan R, De Ruffray P (1982) Les types de climats annuels, un mode d’expression des gradients climatiques intйgrant les variations interannuelles. Météorol VIe série 31:39–81

    Google Scholar 

  25. Planchon O, Rosier K (2005) Climat et variabilité climatique dans le Nord-Ouest de l’Argentine: problèmes posés et analyse durant la deuxième moitié du vingtième siècle. Ann Assoc Int Climatol 2:55–76

    Google Scholar 

  26. Quénol H, Planchon O, Wahl L (2008) Méthodes d’identification des climats viticoles. Bull Soc Géogr 51:127–137

    Google Scholar 

  27. Eveno M, Planchon O, Oszwald J, Dubreuil V, Quenol H (2016) Variabilitй et changement climatique en France : analyses au moyen de la classification de Köppen et des «types de climats annuels». Climatol 13:47–70

    Article  Google Scholar 

  28. Chenkova N, Nikolova N (2015) Air temperature and precipitation variability in Northeastern Bulgaria on the background of climate change. Therm Sci. https://doi.org/10.2298/TSCI150430104C

    Article  Google Scholar 

  29. Vlăduţ A, Nikolova N, Licurici M (2017) Aridity assessment within southern Romania and northern Bulgaria. Hrvatski Geogr Glas 79(2):5−26. https://doi.org/10.21861/HGG.2017.79.02.01

  30. Vlăduţ A, Nikolova N, Licurici M (2018) Evaluation of thermal continentality within southern Romania and northern Bulgaria (1961–2015). Geofiz 35. https://doi.org/10.15233/gfz.2018.35.1

  31. Radeva K, Nikolova N, Gera M (2018) Assessment of hydro-meteorological drought in the Danube Plain, Bulgaria. Hrvatski Geogr Glas 80(1):7−25. https://doi.org/10.21861/HGG.2018.80.01.01

  32. Kirov K (1929) Climatic scheme of Bulgaria. A compilation of the Bulgarian academy of science. Book XXV. Nat Sci 11:57–60 [in Bulgarian]

    Google Scholar 

  33. Topliyski (2006) Climate of Bulgaria. Amstels, Sofia [in Bulgarian]

    Google Scholar 

  34. Popov H (2018) Local climates of Vardar, Struma and Mesta valleys (Balkan Peninsula) according to the modified Köppen climate classification. Bull Serb Geogr Soc https://doi.org/10.2298/GSGD180428005P

Download references

Acknowledgements

This work has been carried out in the framework of the National Science Program “Environmental Protection and Reduction of Risks of Adverse Events and Natural Disasters”, approved by the Resolution of the Council of Ministers No 577/17.08.2018 and supported by the Ministry of Education and Science (MES) of Bulgaria (Agreement No Д01-363/17.12.2020).

We thank to prof. Liliana Zaharia from University of Bucharest and prof. Abdelazim Negm for invitation and opportunity to publish in this prestige book. We thank to prof. Vincent Dubreuil from University of Rennes for nice discusions about Köppen climate classification. We also thank to editor prof. Abdelazim Negm and the anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hristo Popov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Popov, H. (2022). Using Köppen Climate Classification Like Diagnostic Tool to Quantify Climate Variation in Lower Danube Valley for the Period 1961–2017. In: Negm, A., Zaharia, L., Ioana-Toroimac, G. (eds) The Lower Danube River. Earth and Environmental Sciences Library. Springer, Cham. https://doi.org/10.1007/978-3-031-03865-5_8

Download citation

Publish with us

Policies and ethics