Skip to main content

Water Temperature Variability in the Lower Danube River

  • Chapter
  • First Online:
The Lower Danube River

Abstract

The chapter presents the analysis of the water temperature variability in the Lower Danube River. Temperature of water is one of the most important quality indicators for river ecosystems, which controls many physical and biogeochemical processes within the water body. All the aquatic species have the specific water temperature ranges for growth and development, thus, significant variations of water temperature may cause harmful consequences to the aquatic ecosystems. Surface waters present high variations of temperature depending on spatio-temporal variability and environmental conditions. Gradual rising of the surface waters temperature has a favorable influence on the water properties because this facilitates the natural water purification. An important influencing factor is the discharge of heated wastewaters directly in the streams, which can cause the reduction of dissolved oxygen content. In this regard, we present a time series statistical analysis of the water temperature recorded between 2001 and 2016 in three monitoring sections located on the Romanian side of the Lower Danube i.e., Pristol (RO2), Chiciu (RO4), and Reni (RO5) using monitoring data from the Transnational Monitoring Network of the Danube River (TNMN) database. Despite some differences between the monitoring sections determined by the local hydrological, climatic, and topographical conditions, a relative constancy of the water temperature was observed on the entire analyzed period. However, the obtained trendlines show that the water temperature increased from 2001 to 2016, this pattern being more evident in the southernmost control section (Chiciu-RO4). The SARIMA model provided a comprehensive description of the spatiotemporal variations of the water temperature but more complex approaches for improving water monitoring and modeling in the Lower Danube are required to integrate them in process-based analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gualtieri C, Gualtieri P, Doria GP (2002) Dimensional analysis of reaeration rate in streams. J Environ Eng 128(1):12–18

    Article  CAS  Google Scholar 

  2. Bondar-Kunze E, Kasper V, Hein T (2021) Responses of periphyton communities to abrupt changes in water temperature and velocity, and the relevance of morphology: a mesocosm approach. Sci Total Environ 768:145200

    Article  CAS  Google Scholar 

  3. Hill BH, Elonen CM, Herlihy AT, Jicha TM, Mitchell RM (2017) A synoptic survey of microbial respiration, organic matter decomposition, and carbon efflux in U.S. streams and rivers. Limnol Oceanogr 62(1):S147–S159. https://doi.org/10.1002/lno.10583

  4. Fritz KM, Schofield KA, Alexander LC et al (2018) Physical and chemical connectivity of streams and riparian wetlands to downstream waters: a synthesis. J Am Water Resour Assoc 54(2):323–345. https://doi.org/10.1111/1752-1688.12632

    Article  CAS  Google Scholar 

  5. Dai Y, Hein T, Preiner S, Reitsema RE, Schoelynck J (2020) Influence of water temperature and water depth on macrophyte–bacterioplankton interaction in a groundwater-fed river. Environ Sci Pollut Res 27(12):13166–13179

    Article  CAS  Google Scholar 

  6. Dang AT, Kumar L, Reid M (2020) Modelling the potential impacts of climate change on rice cultivation in Mekong Delta, Vietnam. Sustainability 12(22):9608

    Article  Google Scholar 

  7. Skowron R (2017) Water temperature in investigations of Polish lakes. Limnol Rev 17(1):31–46

    Article  Google Scholar 

  8. Wolf KL, Noe GB, Ahn C (2013) Hydrologic connectivity to streams increases nitrogen and phosphorus inputs and cycling in soils of created and natural floodplain wetlands. J Environ Qual 42(4):1245–1255. https://doi.org/10.2134/jeq2012.0466

    Article  CAS  Google Scholar 

  9. Whitehead PG, Wilby RL, Battarbee RW, Kernan M, Wade AJ (2009) A review of the potential impacts of climate change on surface water quality. Hydrol Sci J 54(1):101–123. https://doi.org/10.1623/hysj.54.1.101

    Article  Google Scholar 

  10. Dodds WK (2002) Freshwater ecology concepts and environmental applications. Academic Press, San Diego

    Google Scholar 

  11. Caissie D (2006) The thermal regime of rivers—a review. Freshw Biol 51:1389–1406

    Article  Google Scholar 

  12. OECD (2021) Data sheets for surface water quality standards—Annex 1. https://www.oecd.org/env/outreach/38205662.pdf. Accessed 20 July 2021

  13. Cai Y, Zhang H, Zheng P et al (2016) Quantifying the impact of land use/land cover changes on the urban heat island: a case study of the natural wetlands distribution area of Fuzhou City, China. Wetlands 36:285–298. https://doi.org/10.1007/s13157-016-0738-7

    Article  Google Scholar 

  14. Rutherford JC, Blackett S, Blackett C, Saito L, Davies-Colley RJ (1997) Predicting the effects of shade on water temperature in small streams. NZJ Mar Freshw Res 31(5):707–721. https://doi.org/10.1080/00288330.1997.9516801

    Article  Google Scholar 

  15. Osborne LL, Kovacic DA (1993) Riparian vegetated buffer strips in water-quality restoration and stream management. Freshw Biol 29(2):243–258

    Article  Google Scholar 

  16. Bowler DE, Mant R, Orr H et al (2012) What are the effects of wooded riparian zones on stream temperature? Environ Evid 1:3. https://doi.org/10.1186/2047-2382-1-3

    Article  Google Scholar 

  17. Feller MC (1981) Effects of clearcutting and slashburning on stream temperature in southwestern British Columbia 1. J Am Water Resour Assoc 17(5):863–867

    Article  Google Scholar 

  18. Garner G, Malcolm IA, Sadler JP, Hannah DM (2017) The role of riparian vegetation density, channel orientation and water velocity in determining river temperature dynamics. J Hydrol 553:471–485

    Article  Google Scholar 

  19. Dunea D, Iordache Ș, Iordache V, Purcoi L, Predescu L (2019) Monitoring of the evapotranspiration processes in riparian grasslands. Sci Papers Ser A Agron 62(1):278–285

    Google Scholar 

  20. Roth TR, Westhoff MC, Huwald H, Huff JA, Rubin JF, Barrenetxea G, Vetterli M, Parriaux A, Selker JS, Parlange MB (2010) Stream temperature response to three riparian vegetation scenarios by use of a distributed temperature validated model. Environ Sci Technol 44(6):2072–2078

    Article  CAS  Google Scholar 

  21. Boothroyd IK, Quinn JM, Langer EL, Costley KJ, Steward G (2004) Riparian buffers mitigate effects of pine plantation logging on New Zealand streams: 1. Riparian vegetation structure, stream geomorphology and periphyton. For Ecol Manag 194(1–3):199–213

    Google Scholar 

  22. Purcoi EL (2020) Assessing the health and role of riparian vegetation under anthropogenic impacts. A comparative study of two degraded river basins from Romania. Dissertation, King’s College London, University of London

    Google Scholar 

  23. Trimmel H, Weihs P, Leidinger D, Formayer H, Kalny G, Melcher A (2018) Can riparian vegetation shade mitigate the expected rise in stream temperatures due to climate change during heat waves in a human-impacted pre-alpine river? Hydrol Earth Syst Sci 22(1):437–461

    Article  Google Scholar 

  24. Allan JD (1995) Stream ecology: structure and function of running waters. Chapman & Hall, London

    Book  Google Scholar 

  25. Wu WY, Lo MH, Wada Y et al (2020) Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers. Nat Commun 11:3710. https://doi.org/10.1038/s41467-020-17581-y

    Article  CAS  Google Scholar 

  26. Dobrot R (2020) Lecții de Hidrologie și Hidrogeologie. Ed. Didactică și Pedagogică S.A., București

    Google Scholar 

  27. Murdock JN (2008) Stream management. In: Jørgensen SE, Fath BD (eds) Encyclopedia of ecology. Elsevier

    Google Scholar 

  28. Loperfido JV (2014) Surface water quality. In: Ahuja S (ed) Streams and rivers: scaling and climate change, comprehensive water quality and purification, 1st edn, vol 4. Elsevier, pp 87–105

    Google Scholar 

  29. Dunea D, Brețcan P, Tanislav D, Șerban G, Teodorescu R, Iordache S, Petrescu N, Țuchiu E (2020) Evaluation of water quality in Ialomița river basin in relationship with land cover patterns. Water 12:735

    Article  CAS  Google Scholar 

  30. Garcia M, Ridolfi E, Di Baldassarre G (2020) The interplay between reservoir storage and operating rules under evolving conditions. J Hydrol 590:125270

    Article  Google Scholar 

  31. Csagoly P, Magnin G, Hulea O (2016) Lower Danube green corridor. In: Finlayson C, Milton G, Prentice R, Davidson N (eds) The wetland book. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6173-5_251-1

  32. Mihăilescu V (coord) (1969) Geografia Văii Dunării Românești, Edit. Academiei Române, București

    Google Scholar 

  33. Zaharia L, Ioana-Toroimac G (2013) Romanian Danube River management: impacts and perspectives. European Continental Hydrosystems under Changing Water Policy. München, Verlag Dr. Friedrich Pfeil, pp 159–170

    Google Scholar 

  34. Hachemi K, Grecu F, Ioana-Toroimac G, Constantin DM, Ozer A (2020) The diachronic analysis of island dynamics along the Vedea-Oltenița Danube river sector using SAR imagery. Med Geosc Rev 1–15

    Google Scholar 

  35. Hachemi K, Grecu F, Ioana-Toroimac G, Grigorie (Omrani) Ş, Ozer A, Kuzucuoglu C (2020) Contribution of SAR radar imagery in the study of the dynamics of the Danube island system, Giurgiu-Călăraşi sector, Romania. Adv Model Anal B 63(1–4):1–6. https://doi.org/10.18280/ama_b.631-401

  36. Dobrică V, Demetrescu C, Mareș I et al (2018) Long-term evolution of the Lower Danube discharge and corresponding climate variations: solar signature imprint. Theor Appl Climatol 133:985–996. https://doi.org/10.1007/s00704-017-2234-2

    Article  Google Scholar 

  37. Bogdan O (1978) Fenomene climatice de iarna si de vara, Edit. Stiintifica si Enciclopedica, Bucuresti

    Google Scholar 

  38. Bogdan O (1989) Inversiunile de temperatură cu privire specială asupra celor care se produc pe suprafețele de apă. SCGGG-geografie, XXXVI

    Google Scholar 

  39. Gâştescu P, Ţuchiu E (2012) The Danube river in the pontic sector-hidrologycal regime. In: Water resources and wetlands. Conference proceedings, pp 14–16

    Google Scholar 

  40. Tuchiu E (2020) Starea corpurilor de apă de pe cursul inferior al Dunării între Baziaş şi Isaccea. Edit. Transversal, Targoviste

    Google Scholar 

  41. Zaharia L (1993) Câteva observaţii asupra scurgerii medii a unor râuri tributare Dunării româneşti. An Univ Bucur ser. Geogr 42:73–80

    Google Scholar 

  42. Gâștescu P, Zăvoianu I, Pisota I, (2005) Apele în Geografia României, vol. V. Edit Academiei Române, București

    Google Scholar 

  43. Dunea D, Iordache S (2016) Analyzing the impact of airborne particulate matter on urban contamination with the help of hybrid neural networks. In: Garcia Rosa JL (ed) Artificial neural networks. IntechOpen. https://doi.org/10.5772/63109

  44. Box G, Jenkins G (1976) Time series analysis: forecasting and control. Holden-Day, San Francisco

    Google Scholar 

  45. Dunea D, Iordache S (2011) Time series analysis of the heavy metals loaded wastewaters resulted from chromium electroplating process. Environ Eng Manage J 10(3):421–434

    Article  CAS  Google Scholar 

  46. Chatfield C (1996) The analysis of time series, an introduction, 5th edn. Chapman and Hall, London

    Google Scholar 

  47. Pohoață A, Dunea D (2014) Statistical methods and mathematical algorithms for estimating children's exposure to particulate matter pollution. In: Iordache S, Dunea D (eds) Methods for the assessment of air pollution with particulate matter to children’s health. Ed. Matrix Rom, Bucharest

    Google Scholar 

  48. Valipour M, Banihabib ME, Mahmood S, Behbahani R (2013) Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J Hydrol 476:433–441

    Article  Google Scholar 

  49. Nau FR (2005) Introduction to ARIMA: nonseasonal models. https://people.duke.edu/~rnau/411arim.htm. Accessed 20 July 2021

  50. Schoch AL, Schilling KE, Chan KS (2009) Time-series modeling of reservoir effects on river nitrate concentrations. Adv Water Resour 32(8):1197–1205

    Article  CAS  Google Scholar 

  51. Moeeni H, Bonakdari H, Ebtehaj I (2017) Integrated SARIMA with neuro-fuzzy systems and neural networks for monthly inflow prediction. Water Resour Manage 31(7):2141–2156

    Article  Google Scholar 

  52. Fathian F, Mehdizadeh S, Sales AK, Safari MJS (2019) Hybrid models to improve the monthly river flow prediction: integrating artificial intelligence and non-linear time series models. J Hydrol 575:1200–1213

    Article  Google Scholar 

  53. Han P, Wang PX, Zhang SY, Zhu DH (2010) Drought forecasting based on the remote sensing data using ARIMA models. Math Comput Model 51(11–12):1398–1403

    Article  Google Scholar 

  54. Anda A, Soos G, da Silva JAT, Kozma-Bognar V (2015) Regional evapotranspiration from a wetland in Central Europe, in a 16-year period without human intervention. Agric For Meteorol 205:60–72

    Article  Google Scholar 

  55. STATISTICA software Statsoft. Inc., Tulsa, OK, USA (2007) https://www.statistica.com/en/

  56. Murphy BL, Morrison RD (eds) (2015) Introduction to environmental forensics, 3rd edn. Academic Press. https://doi.org/10.1016/C2012-0-01202-1

  57. EEA (2021) European Environment Agency, Indicator assessment: water temperature. https://www.eea.europa.eu/data-and-maps/indicators/water-temperature-2/assessment. Accessed 20 July 2021

  58. Marszelewski W, Pius B (2019) Effect of climate change on thermal-ice regime of shallow lakes compared to deep lakes: Case study of lakes in the temperate zone (Northern Poland). J Limnol 78(1). https://doi.org/10.4081/jlimnol.2018.1763

  59. ICPR (2014) Estimation of the effects of climate change scenarios on future Rhine water temperature development. Extensive Version. ICPR Report. http://www.iksr.org/fileadmin/user_upload/Dokumente_de/Taetigkeitsberichte/214_en.pdf. Accessed 20 July 2021

  60. van Vliet MTH et al (2013) Global river discharge and water temperature under climate change. Glob Environ Change 23(2):450–464. https://doi.org/10.1016/j.gloenvcha.2012.11.002

    Article  Google Scholar 

  61. Water Enciclopedia (2021) http://www.waterencyclopedia.com/Re-St/Stream-Ecology-Temperature-Impacts-on.html#ixzz6jA7P8PmB. Accessed 20 July 2021

  62. Climate Data Store—Copernicus (2021) https://cds.climate.copernicus.eu/. Accessed 20 July 2021

  63. Ouellet V, St-Hilaire A, Dugdale SJ, Hannah DM et al (2020) River temperature research and practice: recent challenges and emerging opportunities for managing thermal habitat conditions in stream ecosystems. Sci Total Environ 736:139679

    Article  CAS  Google Scholar 

  64. Crețescu I, Kovács Z, Cîmpeanu SM (2016). Monitoring of surface water status in the Lower Danube Basin, In: Bucur D (ed) River basin management. IntechOpen. https://doi.org/10.5772/64399

Download references

Acknowledgements

This work was supported by a grant of the Romanian National Authority for Scientific Research, CNDI—UEFISCDI, project number PN-III-1.2-PCCDI-2017-0721 (https://inter-aspa.ro/).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniel Dunea or Petre Brețcan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dunea, D., Brețcan, P., Șerban, G., Tanislav, D., Țuchiu, E., Iordache, Ș. (2022). Water Temperature Variability in the Lower Danube River. In: Negm, A., Zaharia, L., Ioana-Toroimac, G. (eds) The Lower Danube River. Earth and Environmental Sciences Library. Springer, Cham. https://doi.org/10.1007/978-3-031-03865-5_5

Download citation

Publish with us

Policies and ethics