Skip to main content

A SPEI-Based Approach to Drought Hazard, Vulnerability and Risk Analysis in the Lower Danube River Region

  • Chapter
  • First Online:
The Lower Danube River

Abstract

Natural hazards, including droughts, are processes and phenomena that can trigger a negative impact on the environment, society and various economic sectors. The present chapter aims to identify spatial peculiarities of drought characteristics (frequency, duration, affected area) and to analyse drought hazard, vulnerability and risk in the Lower Danube region. The study area includes administrative regions from Romania (counties) and Bulgaria (districts) located along the Danube River, which is the common administrative border between the two countries. The northward and southward Danube territories are part of the most important agricultural areas of both countries, where natural landscapes have been significantly transformed by anthropogenic activities which contributed to the removal of the natural vegetation and its replacement with cultivated plants and urban areas. Drought characteristics and associated hazards were analysed using the Standardized Precipitation-Evapotranspiration Index (SPEI-3, 6, 12) for the period 1981–2019. Population density and land cover/land use data were taken into account in the drought vulnerability assessment. Drought hazard and vulnerability were considered in the drought risk evaluation which allowed the identification of the regional drought “hotspots”. Results show a very high level of drought risk associated to short-term drought (SPEI-3) in the central and eastern parts of the study region. In the case of long-term drought (SPEI-12), a reduction in areas showing a very high drought risk level is observed. The administrative regions located in the western part of the study area have very low and low levels of drought risk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ceglar A, Medved-Cvikl B, Morán-Tejeda E, Vicente Serrano SM, Kajfež-Bogataj L (2012) Assessment of multi-scale drought datasets to quantify drought severity and impacts in agriculture: a case study for Slovenia. Int J Spat Data Infrastruct Res 7:464–487

    Google Scholar 

  2. Buras A, Rammig A, Zang C (2020) Quantifying impacts of the drought 2018 on European ecosystems in comparison to 2003. Biogeosciences 17:1655–1672

    Article  Google Scholar 

  3. Schuldt B, Buras A, Arend M, Vitasse Y, Beierkuhnlein C, Damm A, Gharun M, Grams TEE, Hauck M, Hajek P, Hartmann H, Hiltbrunner E, Hoch G, Holloway-Phillips M, Körner C, Larysch E, Lübbe T, Nelson DB, Rammig A, Rigling A, Rose L, Ruehr NK, Schumann K, Weiser F, Werner C, Wohlgemuth T, Zang CS, Kahmne A (2020) A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl Ecol 45:86–103

    Article  Google Scholar 

  4. Erfurt M, Glaser R, Blauhut V (2019) Changing impacts and societal responses to drought in southwestern Germany since 1800. Reg Environ Change 19:2311–2323

    Article  Google Scholar 

  5. Wilhite DA, Svoboda MD, Hayes MJ (2007) Understanding the complex impacts of drought: a key to enhancing drought mitigation and preparedness. Water Resour Manag 21(5):763–774

    Article  Google Scholar 

  6. Dai A (2011) Drought under global warming: A review. Clim Change 3:45–65

    Google Scholar 

  7. Beran M, RodierJA, (1985) Hydrological aspects of drought, Studies and reports in hydrology 39. UNESCO-WMO, Paris

    Google Scholar 

  8. Hisdal H, Tallaksen LM (2000) Drought event definition. Technical Report. No. 6. Assessment of the Regional Impact of Droughts in Europe. University of Oslo, Department of Geophysics

    Google Scholar 

  9. Tallaksen L M, Van Lanen HAJ (2004) Hydrological drought. Processes and estimation methods forstreamflow and groundwater. Developments in Water Science. Vol. 48. Elsevier Science B.V., Amsterdam

    Google Scholar 

  10. Van Loon AF (2015) Hydrological drought explained. WIREsWater 2:359–392. https://doi.org/10.1002/wat2.1085

    Article  Google Scholar 

  11. Sohoulande Djebou DC (2017) Bridging drought and climate aridity. J Arid Environ 144:170–180

    Article  Google Scholar 

  12. Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 391:202–216

    Article  Google Scholar 

  13. Van Loon AF, Van Lanen HAJ (2013) Making the distinction between water scarcity and drought using an observation-modeling framework. Water Resour Res 49:1483–1502

    Article  Google Scholar 

  14. UNDRR 2019. Global Assessment Report on Disaster Risk Reduction (GAR). Available via https://www.droughtmanagement.info/literature/UNIVERSITYofOSLO_Drought_Event_Definition_2000.pdf. Accessed 27 Sep 2021

  15. Spinoni J, Gustavo N, Vogt JV (2017) Pan-European seasonal trends and recent changes of drought frequency and severity. Global Planet Change 148:113–130

    Article  Google Scholar 

  16. Vicente-Serrano SM, Lopez-Moreno JI, Beguería S, Lorenzo-Lacruz J, Sanchez-Lorenzo A, García-Ruiz JM et al (2014) Evidence of increasing drought severity caused by temperature rise in southern Europe. Environ Res Lett 9(4):044001

    Article  Google Scholar 

  17. Riedel T, Weber TKD (2020) Review: The influence of global change on Europe’s water cycle and groundwater recharge. Hydrogeol J 28:1939–1959

    Article  Google Scholar 

  18. Stagl J, Mayr E, Koch H, Hattermann F F, Huang S (2014) Effects of climate change on the hydrological cycle in Central and Eastern Europe. In: Rannow S., Neubert M. (eds) Managing protected areas in Central and Eastern Europe under climate change. Advances in global change research, vol 58. Springer, Dordrecht

    Google Scholar 

  19. Sutanto C, Vitolo C, Di Napoli M, D’Andrea HAJ, Lanen V (2020) Heatwaves, droughts, and fires: exploring compound and cascading dry hazards at the pan-European scale. Environ Int 134:105276

    Article  Google Scholar 

  20. Russo A, Gouveia CM, Dutra E, Soares PMM, Trigo RM (2019) The synergy between drought and extremely hot summers in the Mediterranean. Environmental Research Letters 14(1)

    Google Scholar 

  21. Barriopedro D, FischerEM LJ, Trigo R, Garcia-HerreraR, (2011) The hot summer of 2010: redrawing the temperature record map of Europe. Science 332:220–224

    Article  CAS  Google Scholar 

  22. EEA (2019) Climate change adaptation in the agriculture sector in Europe, EEA Report 04. Available via https://www.eea.europa.eu/publications/cc-adaptation-agriculture. Accessed on 9 Jan 2021

  23. Kim W, Iiyumi T, Nishimori M (2019) Global patterns of crop production losses associated with drought from 1983 to 2009. J Appl Meteorol Climatol 58(6):1233–1244

    Article  Google Scholar 

  24. Páscoa P, Gouveia CM, Russo A, Trigo RM (2017) The role of drought on wheat yield interannual variability in the Iberian Peninsula from 1929 to 2012. Int J Biometeorol 61:439–451

    Article  Google Scholar 

  25. Potopová V, Boroneanţ C, Boincean B, Soukup J (2016) Impact of agricultural drought on main crop yields in the Republic of Moldova. Int J Climatol 36(4):2063–2082

    Article  Google Scholar 

  26. Bastos A, Gouveia CM, Trigo RM, Running SW (2014) Analysing the spatio-temporal impacts of the 2003 and 2010 extreme heatwaves on plant productivity. Eur Biogeosci 11:3421–3435

    Article  Google Scholar 

  27. Peters W, Bastos A, Ciais P, Vermeulen A (2020) A historical, geographical and ecological perspective on the 2018 European summer drought. Phil Trans R Soc B 375:20190505

    Article  Google Scholar 

  28. Samaniego L, Thober S, Kumar R, Wanders N, Rakovec O, Pan M, Zink M, Sheffield J, Wood EF, Marx A (2018) Anthropogentic warming exacerbates European soil moisture droughts. Nat Clim Chang 8(5):421–426

    Article  Google Scholar 

  29. EEA (2012) Climate Change, Impacts and Vulnerability in Europe 2012, an Indicator-based Report Office for Official Publications of the European Union, Luxembourg

    Google Scholar 

  30. Rey D, Holman IP, Knox JW (2017) Developing drought resilience in irrigated agriculture in the face of increasing water scarcity. Reg Environ Change 17:1527–1540

    Article  Google Scholar 

  31. Weatherhead EK, Knox JW, Hess TM, Daccache A (2015) Exploring irrigation futures—developments in demand forecasting. Outlook Agr 44(2):119–126

    Article  Google Scholar 

  32. von Hardenberg TMJ, AghaKouchak, A, Carmen Llasat M, Provenzale A, Trigo RM (2017) On the key role of droughts in the dynamics of summer fires in mediterranean Europe. Scient Rep 7(81):1–11

    Google Scholar 

  33. Grumm RH (2011) The central European and Russian heat event of July-August 2010. BAMS:1285–1296

    Google Scholar 

  34. Witte JC, Douglass AR, da Silva A, Torres O, Duncan RLBN (2011) Nasa a-train and terra observations of the 2010 Russian wildfires. Atmos Chem Phys 11:9287–9301

    Article  CAS  Google Scholar 

  35. Di Napoli C, Pappenberger F, Cloke HL (2019) Verification of heat stress thresholds for a health-based heatwave definition. J Appl Meteorol Climatol 58:1177–1194

    Article  Google Scholar 

  36. Ionita M, Tallaksen LM, Kingston DG, Stagge JH, Laaha G, Van Lanen HAJ, Scholz P, Chelcea SM, Haslinger K (2017) The european 2015 drought from a climatological perspective. Hydrol Earth Syst Sci 21:1397–1419

    Article  Google Scholar 

  37. Robine JM, Cheung SLK, Roy SL, Van Oyen H, Griffiths C, Michel JP, Herrmann FR (2008) Death toll exceed 70,000 in Europe during the summer of 2003. CR Biol 331:171–178

    Article  Google Scholar 

  38. Tsakiris G, Nalbantis I, Vangelis H, Verbeiren B, Huysmans M, Tychon B, Jacquemin I, Canters F, Vandehaegen S, Engelen G, Poelmans L, De Backer P, Batalaan O (2013) A system-based paradigm of drought analysis for operational management. Water Resour Manag 27(15):5281–5297

    Article  Google Scholar 

  39. Maxwell JT, Soulé P T (2011) Drought and other driving forces behind population change in six rural counties in the United States. Southeastern Geographer V(51): 133–148

    Google Scholar 

  40. European Commission (2007b) Water scarcity and droughts, second Interim Report, June 2007. Available via http://ec.europa.eu/environment/water/quantity/pdf/comm_droughts/2nd_int_report.pdf. Accessed 09 Mar 2015

  41. Cammalleri C, Arias-Muñoz C, Barbosa P, de Jager A, Magni D, Masante D, Mazzeschi M, McCormick N, Naumann G, Spinoni J, Vogt J (2020) A revision of the Combined Drought Indicator (CDI) as part of the European Drought Observatory (EDO). Nat Hazards Earth Syst Sci Discuss [preprint]

    Google Scholar 

  42. EEA (2010c) Mapping the impacts of natural Hazards and technological accidents in Europe: an overview of the last decade. Technical report No 13/2010, European Environment Agency (EEA), Publications Office of the European Union, Luxembourg

    Google Scholar 

  43. Leng G, Hall J (2019) Crop yield sensitivity to global major agricultural countries to droughts and the projected changes in the future. Sci Total Environ 654:811–821

    Article  CAS  Google Scholar 

  44. Zscheischler J, Seneviratne SI (2017) Dependence of drivers affects risks associated with compound events. Sci Adv 3:e1700263

    Article  Google Scholar 

  45. Forzieri G, Feyen L, Russo S, Vousdoukas M, Alfieri L, Outten S, Migliavacca M, Bianchi A, Rojas R (2016) Cid Multi-hazard assessment in Europe under climate change. Clim Change 137:105–119

    Article  Google Scholar 

  46. Dai A (2013) Increasing drought under global warming in observations and models. Nat Climate Change 3:52–58

    Article  Google Scholar 

  47. Stahl K, Hisdal H (2004) Hydroclimatology. In: Tallaksen LM, Lanen HAJ van (eds) Hydrological Drought—processes and estimation methods for streamflow and groundwater. Developments in water science, 48, Elsevier Science, Amsterdam

    Google Scholar 

  48. Sheffield J, Wood E (2011) Drought: past problems and future scenarios. Earthscan, London, Washington

    Google Scholar 

  49. WadaY, van Beek LPH, Wanders N, Bierkens MFP, (2013) Human water consumption intensifies hydrological drought worldwide. Environ Res Lett 8:1–14

    Google Scholar 

  50. Döll P, Fiedler K, Zhang J (2009) Global-scale analysis of river flow alterations due to water withdrawals and reservoirs. Hydrol Earth Syst Sci 13:2413–2432

    Article  Google Scholar 

  51. Vörösmarty CJ, Green P, Salisbury J, Lammers RB (2000) Global water resources: vulnerability from climate change and population growth. Science 289:284–288

    Article  Google Scholar 

  52. Donat MG, Alexander LV, Herold N, Dittu AJ (2016) Temperature and precipitation extremes in century-long gridded observations, reanalyses, and atmospheric model simulations. J Geophys Res 121:11174–11189

    Article  Google Scholar 

  53. Funk C, Harrison L, Alexander L, Peterso P, BehrangiA HG (2019) Exploring trends in wet-season precipitation and drought indices in wet, humid and dry regions. Environ Res Lett 14(11):115002

    Article  Google Scholar 

  54. Pendergrass AG, Hartmann DL (2014) The atmospheric energy constraint on global-mean precipitation change. J Clim 27:757–768

    Article  Google Scholar 

  55. Trenberth KE, Dai A, van der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J (2014) Global warming and changes in drought. Nat Clim Change 4(1):17–22

    Article  Google Scholar 

  56. Sheffield J, Wood EF, Roderick ML (2012) Little change in global drought over the past 60 years. Nature 491(7424):435–438

    Article  CAS  Google Scholar 

  57. Páscoa P, Gouveia CM, Russo A, Trigo RM (2017) The role of drought on wheat yield interannual variability in the Iberian Peninsula from 1929 to 2012. Int J Biometeorol 6:439–451

    Article  Google Scholar 

  58. Spinoni J, Naumann G, Vogt JV, Barbosa P (2015) The biggest drought events in Europe from 1950 to 2012. Journal of Hydrology: Regional Studies 3:509–524

    Google Scholar 

  59. Spinoni J et al. (2016) Meteorological droughts in Europe: Events and impacts—past trends and future projections. JRC Technical Report (Luxembourg: Publications Office of the EU). Available via http://publications.jrc.ec.europa.eu/repository/bitstream/JRC100394/lb-na-27748-en-n.pdf. Accessed 21 Jan 2021

  60. Hoerling M, Eischeid J, PerlwitzJ QX, Zhang T, Pegion P (2012) On the increased frequency of Mediterranean drought. J Clim 25(6):2146–2161

    Article  Google Scholar 

  61. Kingston DG, Stagge JH, Tallaksen LM, Hannah DM (2015) European-scale drought: understanding connections between atmospheric circulation and meteorological drought indices. J Clim 28(2):505–516

    Article  Google Scholar 

  62. Seneviratne SI (2012) Climate science: historical drought trends revisited. Nature 491(7424):338–339

    Article  CAS  Google Scholar 

  63. Bordi I, Fraedrich K, Sutera A (2009) Observed drought and wetness trends in Europe: an update. Hydrol Earth Syst Sci 13(8):1519–1530

    Article  Google Scholar 

  64. Willems P (2013) Multidecadal oscillatory behaviour of rainfall extremes in Europe. Clim Change 120(4):931–944

    Article  Google Scholar 

  65. Páscoa P, Gouveia C, Ana R, Bojariu R, Vicente-Serrano S, Trigo R (2020) Drought impacts on vegetation in Southeastern Europe. Remote Sensing 12:2156

    Article  Google Scholar 

  66. Hänsel S, Ustrul Z, Łupikasza E, Skalak P (2019) Assessing seasonal drought variations and trends over Central Europe. Water Resour 127:53–57

    Article  Google Scholar 

  67. Ionita M et al (2017) The European 2015 drought from a climatological perspective. Hydrol Earth Syst Sci 21:1397–1419

    Article  Google Scholar 

  68. Van Lanen HAJ, Laaha KDG, Gauster T, Ionita M, Vidal J-P, Vlnas R, Tallaksen LM, Stahl K, Hannaford J, Delus C, Fendekova M, Mediero L, Prudhomme C, Rets E, Romanowicz RJ, Gailliez S, Wong WK, Adler J, Blauhut V, Caillouet L, Chelcea S, Frolova N, Gudmundsson L, Hanel M, Haslinger K, Kireeva M, Osuch M, Sauquet E, Stagge JH, Van Loon AF (2016) Hydrology needed to manage droughts: the 2015 European case. Hydrol Process 30:3097–3104

    Article  Google Scholar 

  69. Colesca SE, Ciocoiu CN (2013) An overview of the Romanian renewable energy sector. Renew Sustain Energy Rev 24:149–158

    Article  Google Scholar 

  70. Sepulcre-Canto G, Horion S, Singleton A, Carrao H, Vogt J (2012) Development of a combined drought indicator to detect agricultural drought in Europe. Nat Hazards Earth Syst Sci 12:3519–3531

    Article  Google Scholar 

  71. Jakubínský J, Bláhov M, Bartosova L, Steinerová K, Balek J, Dížková P, Semeradova D, Alexandru D, Bardarska G, Bokal S, Borojević G, Bucur A, Cindric K, Barbu A, Debre B, Đorđević M, Đurić I, Mircea B, Gatarić S, Trnka M (2019) Repository of drought event impacts across the Danube Catchment Countries between 1981 and 2016 using publicly available sources. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 67:925–938

    Article  Google Scholar 

  72. ThinkHazard platform. https://thinkhazard.org/en/. Accessed Apr 2021

  73. Alexandrov V (ed) (2011) Methods for monitoring, assessment and impact of drought in Bulgaria. Sofia

    Google Scholar 

  74. Koleva E, Alexandrov V (2008) Drought in the Bulgarian low regions during the 20th century. Theoret Appl Climatol 92:113–120

    Article  Google Scholar 

  75. Petkova B, Kuzmova K, Berova, M (2019) The main abiotic stress factors limiting crop cultiva-tion and production in Bulgaria. Climate changes, drought, water deficit and heat stress. Agricultural Sciences/Agrarni Nauki 11(26):13–22

    Google Scholar 

  76. Radeva K, Nikolova N, Gera M (2018) Assessment of hydro-meteorological drought in the Danube Plain. Bulgaria. Hrvatski geografski glasnik 80(1):7–25

    Article  Google Scholar 

  77. Popova Z, Ivanova M, Martins D, Pereira LS, Doneva K, Alexandrov V, Kercheva M (2014) Vulnerability of Bulgarian agriculture to drought and climate variability with focus on rainfed maize systems. Nat Hazards 74(2):865–886

    Article  Google Scholar 

  78. Popova Z, Ivanova M, Pereira L, Alexandrov V, Kercheva M, Doneva K, Martins D (2015) Droughts and climate change in Bulgaria: assess-ing maize crop risk and irrigation requirements in relation to soil and climate region. Bulgarian J Agr Sci 21(1):35–53

    Google Scholar 

  79. Nikolova N, Alieva G, Voislavova I (2012) Drought periods in non-mountainous part of South Bulgaria on the background of climate change. Ge-ographica Pannonica 16(1):18–25

    Article  Google Scholar 

  80. Alexandrov V (2006) Soil drought monitoring (review). In UNDPGEF, Building capacity for sustainable land management in Bulgaria, 20052008, C.42

    Google Scholar 

  81. Knight CG, Raev I, Staneva M P (2004) Drought in Bulgaria: A contemporary analog of climate change. Ashgate Studies in Environmental Policy and Practice, Aldershot

    Google Scholar 

  82. Radeva K, Nikolova N (2020) Hydrometeorological Drought hazard and vulnerability assessment for Northern Bulgaria. Geographica Pannonica 24(2):112–123

    Article  Google Scholar 

  83. Bunea A (2019) Drought risk assessment by means of Drought Hazard and vulnerability indices in Muntenia region. Riscuri şi catastrophe XIX( 25,2):73–84

    Google Scholar 

  84. Nikolova N (2013) The impact of the drought on the main crops cultivated in Northeastern Bulgaria. Forum Geografic 12(1):16–24. https://doi.org/10.5775/fg.2067-4635.2013.016.i

    Article  Google Scholar 

  85. Alexandrov V, Schneider M, Koleva E, Moisselin JM (2004) Climate variability and change in Bulgaria during the 20th century. Theor Appl Climato 79:133–149. https://doi.org/10.1007/s00704-004-0073-4

    Article  Google Scholar 

  86. Rachev N, Dimitrova D (2016) Changes in average temperatures and precipitation in Bulgaria for the period 1995–2012. Ann. of Sofia University “St. Kliment Ohridski.” Faculty of Physics 109:1–25

    Google Scholar 

  87. Hristova H, Radeva К (2011) Regional analysis of water stress in Bulgria. In: Zlatunova D et al (eds) Seven International conference „Global changes”. Sofia University Press, Sofia

    Google Scholar 

  88. DMCSEE (2012) Summary of the Result of the DMCSEE Project, Co-Financed by the South East Europe TransnationalCooperation Programme; Drought Management Centre for South-East Europe. DMCSEE, Ljubljana

    Google Scholar 

  89. Bisselink B, RooAd B, J, Gelati E, (2018) Future projections of water scarcity in the Danube River Basin due to land use, water demand and climate change. Journal of Environmental Geography 11:25–36

    Article  Google Scholar 

  90. Country Report Romania (2016) EUROPEAN COMMISSION Brussels, 26.2.2016 SWD (2016) 91 final

    Google Scholar 

  91. Cheval S, Dumitrescu A, Birsan M-V (2017) Variability of the aridity in the South-Eastern Europe over 1961–2050. CATENA 151:74–86

    Article  Google Scholar 

  92. Cheval S, Busuioc A, Dumitrescu A, Birsan M-V (2014) Spatiotemporal variability of meteorological drought in Romania using the standardized precipitation index (SPI). Climate Res 60:235–248

    Article  Google Scholar 

  93. Croitoru AE, Piticar A, Imbroane AM, Burada DC (2013) Spatiotemporal distribution of aridity indices based on temperature and precipitation in the extra-Carpathian regions of Romania. Theor Appl Climatol 112:597–607

    Article  Google Scholar 

  94. Stefan S, Ghioca M, Rimbu N, Boroneant C (2004) Study of meteorological and hydrological drought in southern Romania from observational data. Int J Climatol 24:871–881

    Article  Google Scholar 

  95. Barbu I, Popa I (2003) Drought monitoring in Romania. Forestry Technical Publishing House, Câmpulung Moldovenesc

    Google Scholar 

  96. Ionita M, Scholz P, Chelcea S (2016) Assessment of droughts in Romania using the Standardized Precipitation Index. Nat Hazards 81(3):1483–1498

    Article  Google Scholar 

  97. Paltineanu C, Mihailescu I, Seceleanu I et al (2007) Using aridity indices to describe some climate and soil features in Eastern Europe: a Romanian case study. Theor Appl Climatol 90:263–274

    Article  Google Scholar 

  98. Paltineanu C, Mihailescu IF, Prefac Z, Dragota C, Vasenciuc F, Claudia N (2009) Combining the standardized precipitation index and climatic water deficit in characterizing droughts: a case study in Romania. Theor Appl Climatol 97:219–233

    Article  Google Scholar 

  99. Ghioca M (2009) Drought monitoring using self-calibrating Palmer’s indices in the Southwest of Romania. Rom Rep Phys 61(1):151–164

    Google Scholar 

  100. Cheval S, Popa I, Baciu M, Breza T (2003) Spatial and temporal variability of the standardized precipitation index in Romania. Scientific Papers, Institutul National de Meteorologie si Hidrologie, Bucharest

    Google Scholar 

  101. Ionita M, Rimbu N, Chelcea S, Patrut S (2013) Multidecadal variability of summer temperature over Romania and its relation with Atlantic Multidecadal Oscillation. Theor Appl Climatol 113:305–315

    Article  Google Scholar 

  102. Rimbu N, Boroneant C, Buta C, Dima M (2002) Decadal variability of the Danube river flow in the lower basin and its relation with the North Atlantic Oscillation. Int J Climatol 22:1169–1179

    Article  Google Scholar 

  103. Pravalie R, Patriche CV, Sirodoev I, Bandoc G, Dumitrascu M, Peptenatu D (2016) Water deficit and corn productivity during post-socialist period. Case study: southern Oltenia drylands. Romania. Arid Land Res Manag 30:239–257

    Article  Google Scholar 

  104. Sandu I, Mateescu E, Vătămanu V V (2010) Schimbări climatice în România şi efectele asupra agriculturii. Editura Sitech, Craiova

    Google Scholar 

  105. Lupu AB, Ionescu FC, Borza I (2010) The phenomenon of drought and it’s effects within Romania. Research Journal of Agricultural Science 42(4):102–109

    Google Scholar 

  106. Lupu L, Boroneanţ C, Dogaru D (2018) Evaluation of the socioeconomic effects of drought in the Turnu-Măgurele - Giurgiu sector of the Romanian Danube Valley. Rev Roum Géogr/Rom Journ Geogr 62(1):49–70

    Google Scholar 

  107. Dumitraşcu M, Mocanu I, Mitrică B, Dragotă C, Grigorescu I, Dumitrică C (2017) The assessment of socio-economic vulnerability to drought in Southern Romania (Oltenia Plain). International Journal of Disaster Risk Reduction 27:142–154

    Article  Google Scholar 

  108. Bălteanu D, Popovici D-S, A, Dumitraşcu M, Kucsicsa G, Grigorescu I, (2013) Land use and crop dynamics related to climate change signals during the post-communist period in the south Olteania. Romania Proc Rom Acad Series B 15(3):265–278

    Google Scholar 

  109. ICDPR (2013) ICPDR Strategy on Adaptation to Climate Change. ICPDR—International Commission for the Protection of the Danube River

    Google Scholar 

  110. Schneider E, Dister E, Döpke M (eds) (2009) An Atlas for the Lower Danube Green Corridor. Ettlingen: WWF Germany, 47 pages, http://www.wwf.de/fileadmin/fm-wwf/Publikationen-PDF/Donauatlas_ Gesamt.pdf. Accessed 22 Feb 2021

  111. Mansourian S, Doncheva N, Valchev K (2019) Lessons learnt from 20 years of floodplain forest restoration: the Lower Danube landscape. WWF (available at https://wwfeu.awsassets.panda.org/downloads/lessons_learnt_from_20years_of_floodplain_forest_restoration_the_lower_danube_landscap_1.pdf. Accessed on 22 Jan 2021

  112. Topliisky D (2006) Climate of Bulgaria. Amstels Foundation, Sofia

    Google Scholar 

  113. Mitkov S, Topliisky D (2018) Climate change in Bulgaria, represented by complex indices. Annual of Sofia University “St. Kliment Ohridski”, Faculty of Geology and Geography, Book 2- Geography:25–38

    Google Scholar 

  114. ICPDR (2018) Revision and Update of the Danube Study. Final Report. https://www.icpdr.org/main/resources/climate-changeadaptation-update-danube-study. Accessed Apr 2021

  115. Vicente-Serrano SM, Begueria S, Lopez-Moreno JI (2010) A multi-scalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index – SPEI. J Climate 23:1696–1718

    Article  Google Scholar 

  116. Domínguez-Castro F, Vicente-Serrano SM, Tomás-Burguera M, Peña-Gallardo M, Beguería S, El Kenawy A, Luna Y, Morata A (2019) High spatial resolution climatology of drought events for Spain: 1961–2014. Int J Climatol 39(13):5046–5062

    Article  Google Scholar 

  117. SaatyR (1987) The analytic hierarchy process—what it is and how it is used. Mathematical Modelling 9(3–5:161–176

    Google Scholar 

  118. Nikolova V, Zlateva P (2018) Geoinformation approach for complex analysis of natural Hazard. ISPRS—International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-3:375–381

    Google Scholar 

  119. Downing TE, Bakker K (2000) Drought discourse and vulnerability. Chapter 45. In: Wilhite DA (ed) Drought: A global assessment, Natural Hazards and Disasters Series. Routledge Publishers, Abingdon

    Google Scholar 

  120. Rajsekhar D, Singh VP, Mishra AK (2015) Integrated drought causality, hazard, and vulnerability assessment 20 for future socioeconomic scenarios: An information theory perspective. J Geophys Res Atmos 120:6346–6378. https://doi.org/10.1002/2014JD022670

    Article  Google Scholar 

  121. World Bank (2019) Assessing drought hazard and risk: principles and implementationGuidance. World Bank, Washington

    Book  Google Scholar 

  122. Mikhailova MV, Mikhailov VN, Morozov VN (2012) Extreme hydrological events in the Danube River Basin of the last decades. Water Resour 39(2):161–179

    Article  CAS  Google Scholar 

  123. Nuclearelectrica Annual Report (2003) Avalaible via https://www.nuclearelectrica.ro/wp-content/uploads/2014/08/f49fraport_anual_2003_-_snn_sam2.pdf. Accessed on 24 Jan 2021

  124. Bălteanu D, Sima M, Chendeş V, Micu D, Boroneanţ C (2020) Climate change and floods: European and national context. in Bălteanu D, Micu D, Chendeş V (eds) Hazard, vulnerability and resilience to floods in Romania. Approaches at different spatial scales, Publishing House of the Romanian Academy, Bucharest

    Google Scholar 

Download references

Acknowledgements

This work has been carried out in the framework of the National Science Program “Environmental Protection and Reduction of Risks of Adverse Events and Natural Disasters”, approved by the Resolution of the Council of Ministers № 577/17.08.2018 and supported by the Ministry of Education and Science (MES) of Bulgaria (Agreements № Д01-322/18.12.2019 and № Д01-363/17.12.2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Nikolova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nikolova, N. et al. (2022). A SPEI-Based Approach to Drought Hazard, Vulnerability and Risk Analysis in the Lower Danube River Region. In: Negm, A., Zaharia, L., Ioana-Toroimac, G. (eds) The Lower Danube River. Earth and Environmental Sciences Library. Springer, Cham. https://doi.org/10.1007/978-3-031-03865-5_10

Download citation

Publish with us

Policies and ethics