Skip to main content

Data-Driven Modeling for Crop Growth in Plant Factories

  • Chapter
  • First Online:
Sensing, Data Managing, and Control Technologies for Agricultural Systems

Part of the book series: Agriculture Automation and Control ((AGAUCO))

Abstract

Plant factories, also known as vertical farms, are next-generation agricultural systems that integrate various modern technologies. They are almost completely insulated from the external climate and are able to precisely and automatically control internal environmental factors such as light, temperature, humidity, CO2 concentration, and nutrient solution. In such intensive agricultural production systems, massive crop-related data have emerged from equipped sensors and monitoring hardware. Data-driven modeling approaches can help describe the dynamic process of crop growth and provide information for plant factories’ decision-making. Improving energy efficiency and reducing the production costs of plant factories via the digitalization of the crop growth process represent essential research directions. In this chapter, the applications and prospects of data science in plant factories are described from three perspectives: environmental factor sensing, crop growth monitoring, and crop growth models. The physical and chemical properties of the environmental factors and their automated measurement procedures are described. In addition, the basic concepts regarding how the environment affects crop growth are discussed. In terms of techniques to automatically monitor the crop growth status in plant factories, we describe the concepts and applications of data-driven approaches from growth-related properties measurement and abnormal growth detection perspectives. Based on environmental factors and crop growth data, the growth processes of crops and their responses to the environment can be simulated quantitatively. The basic principles of crop growth models are illustrated, and applications of data-driven crop modeling in plant factories are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas, A., Jain, S., Gour, M., & Vankudothu, S. (2021). Tomato plant disease detection using transfer learning with C-GAN synthetic images. Computers and Electronics in Agriculture, 187, 106279. https://doi.org/10.1016/j.compag.2021.106279

    Article  Google Scholar 

  • Abreu, P., Meneses, J. F., & Gary, C. (1998). Tompousse, a model of yield prediction for tomato crops: Calibration study for unheated plastic greenhouses. Electronic Information in Horticulture, 519, 141–150.

    Google Scholar 

  • Afzaal, U., Bhattarai, B., Pandeya, Y. R., & Lee, J. (2021). An instance segmentation model for strawberry diseases based on mask R-CNN. Sensors, 21(19), 6565. https://doi.org/10.3390/s21196565

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmad, I., Hamid, M., Yousaf, S., Shah, S. T., & Ahmad, M. O. (2020). Optimizing pretrained convolutional neural networks for tomato leaf disease detection. Complexity, 2020, 1–6. https://doi.org/10.1155/2020/8812019

    Article  Google Scholar 

  • Ahmed, H. A., Yu-Xin, T., & Qi-Chang, Y. (2020). Optimal control of environmental conditions affecting lettuce plant growth in a controlled environment with artificial lighting: A review. South African Journal of Botany, 130, 75–89. https://doi.org/10.1016/j.sajb.2019.12.018

    Article  CAS  Google Scholar 

  • Alhnaity, B., Kollias, S., Leontidis, G., Jiang, S., Schamp, B., & Pearson, S. (2021). An autoencoder wavelet based deep neural network with attention mechanism for multi-step prediction of plant growth. Information Sciences, 560, 35–50. https://doi.org/10.1016/j.ins.2021.01.037

    Article  Google Scholar 

  • Alhnaity, B., Pearson, S., Leontidis, G., & Kollias, S. (2020). Using deep learning to predict plant growth and yield in greenhouse environments. Acta Horticulturae, 1296, 425–432. https://doi.org/10.17660/ActaHortic.2020.1296.55

    Article  Google Scholar 

  • Bacci, L., Battista, P., & Rapi, B. (2012). Evaluation and adaptation of TOMGRO model to Italian tomato protected crops. New Zealand Journal of Crop and Horticultural Science, 40(2), 115–126.

    Article  CAS  Google Scholar 

  • Bakker, J. C., Bot, G. P. A., Challa, H., & van de Braak, N. J. (1995). Greenhouse climate control: An integrated approach. Wageningen Academic Publishers.

    Book  Google Scholar 

  • Barbedo, J., Vieira Koenigkan, L., Almeida Halfeld-Vieira, B., Veras Costa, R., Lima Nechet, K., Vieira Godoy, C., Lobo Junior, M., Rodrigues Alves Patricio, F., Talamini, V., Gonzaga Chitarra, L., Alves Santos Oliveira, S., Nakasone Ishida, A. K., Cunha Fernandes, J. M., Teixeira Santos, T., Rossi Cavalcanti, F., Terao, D., & Angelotti, F. (2018). Annotated plant pathology databases for image-based detection and recognition of diseases. IEEE Latin America Transactions, 16(6), 1749–1757. https://doi.org/10.1109/TLA.2018.8444395

    Article  Google Scholar 

  • Behmann, J., Mahlein, A.-K., Rumpf, T., Römer, C., & PlĂĽmer, L. (2015). A review of advanced machine learning methods for the detection of biotic stress in precision crop protection. Precision Agriculture, 16(3), 239–260. https://doi.org/10.1007/s11119-014-9372-7

    Article  Google Scholar 

  • Bian, Z. H., Yang, Q. C., & Liu, W. K. (2015). Effects of light quality on the accumulation of phytochemicals in vegetables produced in controlled environments: A review. Journal of the Science of Food and Agriculture, 95(5), 869–877. https://doi.org/10.1002/jsfa.6789

    Article  CAS  PubMed  Google Scholar 

  • Boote, K. J., Rybak, M. R., Scholberg, J. M., & Jones, J. W. (2012). Improving the CROPGRO-tomato model for predicting growth and yield response to temperature. HortScience, 47(8), 1038–1049.

    Article  Google Scholar 

  • Both, A. J. (1995). Dynamic simulation of supplemental lighting for greenhouse hydroponic lettuce production. Rutgers University. https://doi.org/10.13140/RG.2.2.11209.29282

    Book  Google Scholar 

  • Bukhov, N. G., Drozdova, I. S., & Bondar, V. V. (1995). Light response curves of photosynthesis in leaves of sun-type and shade-type plants grown in blue or red light. Journal of Photochemistry and Photobiology B: Biology, 30(1), 39–41. https://doi.org/10.1016/1011-1344(95)07124-K

    Article  CAS  Google Scholar 

  • Chang, C.-L., Chung, S.-C., Fu, W.-L., & Huang, C.-C. (2021). Artificial intelligence approaches to predict growth, harvest day, and quality of lettuce (Lactuca sativa L.) in a IoT-enabled greenhouse system. Biosystems Engineering, 212, 77–105. https://doi.org/10.1016/j.biosystemseng.2021.09.015

    Article  CAS  Google Scholar 

  • Chang, Y. K., Zaman, Q. U., Rehman, T. U., Farooque, A. A., Esau, T., & Jameel, M. W. (2017). A real-time ultrasonic system to measure wild blueberry plant height during harvesting. Biosystems Engineering, 157, 35–44. https://doi.org/10.1016/j.biosystemseng.2017.02.004

    Article  Google Scholar 

  • Chen, X., & CournĂ©de, P.-H. (2018). Model-driven and data-driven approaches for crop yield prediction: Analysis and comparison. International Journal of Mathematical and Computational Sciences, 11(7), 334–342.

    Google Scholar 

  • Chowdhury, M., Kiraga, S., Islam, M. N., Ali, M., Reza, M. N., Lee, W.-H., & Chung, S.-O. (2021). Effects of temperature, relative humidity, and carbon dioxide concentration on growth and glucosinolate content of kale grown in a plant factory. Food, 10(7), 1524. https://doi.org/10.3390/foods10071524

    Article  CAS  Google Scholar 

  • Constantino, K. P., Gonzales, E. J., Lazaro, L. M., Serrano, E. C., & Samson, B. P. (2015). Plant height measurement and tiller segmentation of rice crops using image processing (Vol. 3, p. 6). Springer.

    Google Scholar 

  • Cristofori, V., Fallovo, C., Gyves, E. M., Rivera, C. M., Bignami, C., & Rouphael, Y. (2008). Non-destructive, analogue model for leaf area estimation in persimmon (Diospyros kaki L.f.) based on leaf length and width measurement. European Journal of Horticultural Science, 73, 216–221.

    Google Scholar 

  • De Alwis, S., Zhang, Y., Na, M., & Li, G. (2019). Duo attention with deep learning on tomato yield prediction and factor interpretation. In A. C. Nayak & A. Sharma (Eds.), PRICAI 2019: Trends in artificial intelligence (pp. 704–715). Springer International Publishing. https://doi.org/10.1007/978-3-030-29894-4_56

    Chapter  Google Scholar 

  • Deng, L., & Yu, D. (2014). Deep learning: Methods and applications. Foundations and Trends in Signal Processing, 7(3–4), 197–387.

    Article  Google Scholar 

  • Domijan, K., Jorgensen, M., & Reid, J. (2006). Semi-mechanistic modelling in nonlinear regression: A case study. Australian & New Zealand Journal of Statistics, 48(3), 373–392.

    Article  Google Scholar 

  • Dong, Q., Sun, Q., Hu, Y., Xu, Y., & Qu, M. (2018). Data-driven horticultural crop model for optimal fertigation management - A methodology description. IFAC-PapersOnLine, 51(17), 472–476. https://doi.org/10.1016/j.ifacol.2018.08.167

    Article  Google Scholar 

  • Eshkabilov, S., Lee, A., Sun, X., Lee, C. W., & Simsek, H. (2021). Hyperspectral imaging techniques for rapid detection of nutrient content of hydroponically grown lettuce cultivars. Computers and Electronics in Agriculture, 181, 105968. https://doi.org/10.1016/j.compag.2020.105968

    Article  Google Scholar 

  • Fan, X.-R., Kang, M.-Z., Heuvelink, E., de Reffye, P., & Hu, B.-G. (2015). A knowledge-and-data-driven modeling approach for simulating plant growth: A case study on tomato growth. Ecological Modelling, 312, 363–373. https://doi.org/10.1016/j.ecolmodel.2015.06.006

    Article  Google Scholar 

  • Farneselli, M., Tei, F., & Simonne, E. (2014). Reliability of petiole sap test for N nutritional status assessing in processing tomato. Journal of Plant Nutrition, 37(2), 270–278. https://doi.org/10.1080/01904167.2013.859696

    Article  CAS  Google Scholar 

  • Fuentes, A., Yoon, S., Kim, S., & Park, D. (2017). A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition. Sensors, 17(9), 2022. https://doi.org/10.3390/s17092022

    Article  PubMed Central  Google Scholar 

  • Gijzen, H., Heuvelink, E., Challa, H., Marcelis, L. F. M., Dayan, E., Cohen, S., & Fuchs, M. (1997). HORTISIM: A model for greenhouse crops and greenhouse climate. Modelling Plant Growth, 456, 441–450.

    Google Scholar 

  • Gong, L., Yu, M., Jiang, S., Cutsuridis, V., & Pearson, S. (2021). Deep learning based prediction on greenhouse crop yield combined TCN and RNN. Sensors, 21(13), 4537. https://doi.org/10.3390/s21134537

    Article  PubMed  PubMed Central  Google Scholar 

  • Goto, E. (2012). Plant production in a closed plant factory with artificial lighting. Acta Horticulturae, 956, 37–49. https://doi.org/10.17660/ActaHortic.2012.956.2

    Article  Google Scholar 

  • Gozzovelli, R., Franchetti, B., Bekmurat, M., & Pirri, F. (2021). Tip-burn stress detection of lettuce canopy grown in Plant Factories. IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), 2021, 1259–1268. https://doi.org/10.1109/ICCVW54120.2021.00146

    Article  Google Scholar 

  • Graamans, L., Baeza, E., van den Dobbelsteen, A., Tsafaras, I., & Stanghellini, C. (2018). Plant factories versus greenhouses: Comparison of resource use efficiency. Agricultural Systems, 160, 31–43. https://doi.org/10.1016/j.agsy.2017.11.003

    Article  Google Scholar 

  • Group, S. M. A., & Lake, V. (2015). Internet of Things (IoT): A literature review. Journal of Computer and Communications, 3(5), 164. https://doi.org/10.4236/jcc.2015.35021

    Article  Google Scholar 

  • Hajjdiab, H., & Obaid, A. (2010). A vision-based approach for nondestructive leaf area estimation. Environmental Science and Information Application Technology, 3, 53–56. https://doi.org/10.1109/ESIAT.2010.5568973

    Article  Google Scholar 

  • Hassanzadeh, A., van Aardt, J., Murphy, S. P., & Pethybridge, S. J. (2020). Yield modeling of snap bean based on hyperspectral sensing: A greenhouse study. Journal of Applied Remote Sensing, 14(2), 024519.

    Article  Google Scholar 

  • Heuvelink, E. (1997). TOMSIM: A dynamic simulation model for tomato crop growth and development. In ISHS Second Int. Symp. on Models for Plant Growth, Env. Control and Farm Management in Protected Cultivation, Wageningen, The Netherlands.

    Google Scholar 

  • Heuvelink, E., Lee, J. H., Buiskool, R. P. M., & Ortega, L. (2000). Light on cut chrysanthemum: Measurement and simulation of crop growth and yield. International ISHS Symposium on Artificial Lighting, 580, 197–202.

    Google Scholar 

  • Hoffmeister, D., Waldhoff, G., Korres, W., Curdt, C., & Bareth, G. (2016). Crop height variability detection in a single field by multi-temporal terrestrial laser scanning. Precision Agriculture, 17(3), 296–312. https://doi.org/10.1007/s11119-015-9420-y

    Article  Google Scholar 

  • Hogewoning, S. W., Trouwborst, G., Maljaars, H., Poorter, H., van Ieperen, W., & Harbinson, J. (2010). Blue light dose–responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. Journal of Experimental Botany, 61(11), 3107–3117. https://doi.org/10.1093/jxb/erq132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes, D. P., & Salathe, M. (2015). An open access repository of images on plant health to enable the development of mobile disease diagnostics. https://arxiv.org/abs/1511.08060v2

  • Igathinathane, C., Chennakesavulu, B., Manohar, K., Womac, A. R., & Pordesimo, L. O. (2008). Photovoltaic leaf area meter development and testing. International Journal of Food Properties, 11(1), 53–67. https://doi.org/10.1080/10942910600954739

    Article  Google Scholar 

  • Ioslovich, I., Seginer, I., & Baskin, A. (2002). SE—Structures and environment: fitting the nicolet lettuce growth model to plant-spacing experimental data. Biosystems Engineering, 83(3), 361–371. https://doi.org/10.1006/bioe.2002.0130

    Article  Google Scholar 

  • Jiang, J., Kim, H.-J., & Cho, W.-J. (2018). On-the-go image processing system for spatial mapping of lettuce fresh weight in plant factory. IFAC-PapersOnLine, 51(17), 130–134. https://doi.org/10.1016/j.ifacol.2018.08.075

    Article  Google Scholar 

  • Jones, J., Dayan, E., Allen, L., Keulen, & Challa, H. (1991). A dynamic tomato growth and yield model (TOMGRO). Transactions of ASAE, 34, 2. https://doi.org/10.13031/2013.31715

    Article  Google Scholar 

  • Jones, J. W., Kenig, A., & Vallejos, C. E. (1999). Reduced state–variable tomato growth model. Transactions of ASAE, 42(1), 255.

    Article  Google Scholar 

  • Kitaya, Y., Tsuruyama, J., Kawai, M., Shibuya, T., & Kiyota, M. (2000). Effects of air current on transpiration and net photosynthetic rates of plants in a closed plant production system. In C. Kubota & C. Chun (Eds.), Transplant production in the 21st century: Proceedings of the international symposium on transplant production in closed system for solving the global issues on environmental conservation, food, resources and energy (pp. 83–90). Springer. https://doi.org/10.1007/978-94-015-9371-7_13

    Chapter  Google Scholar 

  • Kocian, A., Massa, D., Cannazzaro, S., Incrocci, L., Di Lonardo, S., Milazzo, P., & Chessa, S. (2020). Dynamic Bayesian network for crop growth prediction in greenhouses. Computers and Electronics in Agriculture, 169, 105167. https://doi.org/10.1016/j.compag.2019.105167

    Article  Google Scholar 

  • Kozai, T. (2013). Resource use efficiency of closed plant production system with artificial light: Concept, estimation and application to plant factory. Proceedings of the Japan Academy, Series B, 89(10), 447–461. https://doi.org/10.2183/pjab.89.447

    Article  Google Scholar 

  • Kozai, T. (2018). Smart plant factory: The Next generation indoor vertical farms. Springer. https://doi.org/10.1007/978-981-13-1065-2

    Book  Google Scholar 

  • Kozai, T. (2022). Chapter 8—Balances and use efficiencies of CO2, water, and energy. In T. Kozai, G. Niu, & J. Masabni (Eds.), Plant factory basics, applications and advances (pp. 129–151). Academic Press. https://doi.org/10.1016/B978-0-323-85152-7.00003-3

    Chapter  Google Scholar 

  • Kozai, T., Niu, G., & Takagaki, M. (2019). Plant factory: An indoor vertical farming system for efficient quality food production. Academic Press.

    Google Scholar 

  • Kozai, T., Niu, G., & Takagaki, M. (2016). Plant factory: An indoor vertical farming system for efficient quality food production. Academic Press.

    Google Scholar 

  • Kumar, N., Belhumeur, P. N., Biswas, A., Jacobs, D. W., Kress, W. J., Lopez, I. C., & Soares, J. V. B. (2012). Leafsnap: A computer vision system for automatic plant species identification. In A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, & C. Schmid (Eds.), Computer vision – ECCV 2012 (Vol. 7573, pp. 502–516). Springer. https://doi.org/10.1007/978-3-642-33709-3_36

    Chapter  Google Scholar 

  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539

    Article  CAS  PubMed  Google Scholar 

  • Lee, M.-J., Son, J. E., & Oh, M.-M. (2014). Growth and phenolic compounds of Lactuca sativa L. grown in a closed-type plant production system with UV-A, -B, or -C lamp. Journal of the Science of Food and Agriculture, 94(2), 197–204. https://doi.org/10.1002/jsfa.6227

    Article  CAS  PubMed  Google Scholar 

  • Lee, S. H., Goeau, H., Bonnet, P., & Joly, A. (2021). Conditional multi-task learning for plant disease identification. In 2020 25th international conference on pattern recognition (ICPR) (pp. 3320–3327). ICPR. https://doi.org/10.1109/ICPR48806.2021.9412643

    Chapter  Google Scholar 

  • Leroy, C., Saint-AndrĂ©, L., & Auclair, D. (2007). Practical methods for non-destructive measurement of tree leaf area. Agroforestry Systems, 71(2), 99–108. https://doi.org/10.1007/s10457-007-9077-2

    Article  Google Scholar 

  • Li, Q., & Kubota, C. (2009). Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environmental and Experimental Botany, 67(1), 59–64. https://doi.org/10.1016/j.envexpbot.2009.06.011

    Article  CAS  Google Scholar 

  • Liakos, K. G., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine learning in agriculture: A review. Sensors, 18(8), 2674. https://doi.org/10.3390/s18082674

    Article  PubMed Central  Google Scholar 

  • Lin, D., Wei, R., & Xu, L. (2019). An integrated yield prediction model for greenhouse tomato. Agronomy, 9(12), 873. https://doi.org/10.3390/agronomy9120873

    Article  Google Scholar 

  • Liu, J., & Wang, X. (2021). Plant diseases and pests detection based on deep learning: A review. Plant Methods, 17(1), 22. https://doi.org/10.1186/s13007-021-00722-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. arXiv:1411.4038.

    Google Scholar 

  • LĂĽ, C., Ren, H., Zhang, Y., & Shen, Y. (2010). Leaf area measurement based on image processing. International Conference on Measuring Technology and Mechatronics Automation, 2, 580–582. https://doi.org/10.1109/ICMTMA.2010.141

    Article  Google Scholar 

  • Marcelis, L. F. M., Maas, F. M., & Heuvelink, E. (2000). The latest developments in the lighting technologies in Dutch horticulture. International ISHS Symposium on Artificial Lighting, 580, 35–42.

    Google Scholar 

  • Markets and Markets. (2021). Plant factory market by growing system (soil-based, non-soil-based, and hybrid), facility type (greenhouses, indoor farms, other facility types), light type, crop type (vegetables, fruits, flowers & ornamentals), and region—global forecast to 2026 (AGI 7962). Markets and Markets. https://www.marketsandmarkets.com/Market-Reports/plant-factory-market-199919959.html

  • Mathieu, J., Linker, R., Levine, L., Albright, L., Both, A. J., Spanswick, R., Wheeler, R., Wheeler, E., deVilliers, D., & Langhans, R. (2006). Evaluation of the nicolet model for simulation of short-term hydroponic lettuce growth and nitrate uptake. Biosystems Engineering, 95(3), 323–337. https://doi.org/10.1016/j.biosystemseng.2006.07.006

    Article  Google Scholar 

  • Medina-RuĂ­z, C. A. (2011). Mathematical modeling on tomato plants: A review. African Journal of Agricultural Reseearch, 6, 33. https://doi.org/10.5897/AJARX11.001

    Article  Google Scholar 

  • Minervini, M., Fischbach, A., Scharr, H., & Tsaftaris, S. A. (2016). Finely-grained annotated datasets for image-based plant phenotyping. Pattern Recognition Letters, 81, 80–89. https://doi.org/10.1016/j.patrec.2015.10.013

    Article  Google Scholar 

  • Mohandas, A., Anjali, M. S., & Rahul Varma, U. (2021). Real-time detection and identification of plant leaf diseases using YOLOv4-tiny. In 2021 12th international conference on computing communication and networking technologies (ICCCNT) (pp. 1–5). ICCCNT. https://doi.org/10.1109/ICCCNT51525.2021.9579783

    Chapter  Google Scholar 

  • Mortensen, A. K., Bender, A., Whelan, B., Barbour, M. M., Sukkarieh, S., Karstoft, H., & Gislum, R. (2018). Segmentation of lettuce in coloured 3D point clouds for fresh weight estimation. Computers and Electronics in Agriculture, 154, 373–381. https://doi.org/10.1016/j.compag.2018.09.010

    Article  Google Scholar 

  • MĂĽller, H., Clough, P., Deselaers, T., & Caputo, B. (2010). ImageCLEF: Experimental evaluation in visual information retrieval (Vol. 32). Springer. https://doi.org/10.1007/978-3-642-15181-1

    Book  Google Scholar 

  • Naznin, M. T., Lefsrud, M., Gravel, V., & Azad, M. O. K. (2019). Blue light added with red LEDs enhance growth characteristics, pigments content, and antioxidant capacity in lettuce, spinach, kale, basil, and sweet pepper in a controlled environment. Plants, 8(4), 93. https://doi.org/10.3390/plants8040093

    Article  CAS  PubMed Central  Google Scholar 

  • Nilsback, M.-E., & Zisserman, A. (2006). A visual vocabulary for flower classification. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2, 1447–1454. https://doi.org/10.1109/CVPR.2006.42

    Article  Google Scholar 

  • Nilsback, M.-E., & Zisserman, A. (2008). Automated flower classification over a large number of classes. Computer Vision Graphics Image Processing, 2008, 722–729. https://doi.org/10.1109/ICVGIP.2008.47

    Article  Google Scholar 

  • Nugroho, A. P., Fadilah, M. A. N., Wiratmoko, A., Azis, Y. A., Efendi, A. W., Sutiarso, L., & Okayasu, T. (2020). Implementation of crop growth monitoring system based on depth perception using stereo camera in plant factory. IOP Conference Series: Earth and Environmental Science, 542(1), 012068. https://doi.org/10.1088/1755-1315/542/1/012068

    Article  Google Scholar 

  • Park, M. H., & Lee, Y. B. (2001). Effects of CO2 concentration, light intensity and nutrient level on growth of leaf lettuce in a plant factory. Acta Horticulturae, 548, 377–384. https://doi.org/10.17660/ActaHortic.2001.548.43

    Article  Google Scholar 

  • Pratama, I. Y., Wahab, A., Alaydrus, M. (2020). Deep learning for assessing unhealthy lettuce hydroponic using convolutional neural network based on faster R-CNN with inception V2. In 2020 Fifth international conference on informatics and computing (ICIC) (pp. 1–6). ICIC. https://doi.org/10.1109/ICIC50835.2020.9288554

    Chapter  Google Scholar 

  • Qaddoum, K., Hines, E. L., & Iliescu, D. D. (2013). Yield prediction for tomato greenhouse using EFuNN. International Scholarly Research Notices, 2013, 430986.

    Google Scholar 

  • Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards real-time object detection with region proposal networks. Advances in Neural Information Processing Systems, 28, 38046.

    Google Scholar 

  • Reyes-Yanes, A., Martinez, P., & Ahmad, R. (2020). Real-time growth rate and fresh weight estimation for little gem romaine lettuce in aquaponic grow beds. Computers and Electronics in Agriculture, 179, 105827. https://doi.org/10.1016/j.compag.2020.105827

    Article  Google Scholar 

  • Rizkiana, A., Nugroho, A. P., Salma, N. M., Afif, S., Masithoh, R. E., Sutiarso, L., & Okayasu, T. (2021). Plant growth prediction model for lettuce (Lactuca sativa.) in plant factories using artificial neural network. IOP Conference Series: Earth and Environmental Science, 733(1), 012027. https://doi.org/10.1088/1755-1315/733/1/012027

    Article  Google Scholar 

  • RodrĂ­guez, F., Berenguel, M., Guzmán, J. L., & RamĂ­rez-Arias, A. (2015). Modeling and control of greenhouse crop growth. Springer International Publishing. https://doi.org/10.1007/978-3-319-11134-6

    Book  Google Scholar 

  • Ross, J., Ross, V., & Koppel, A. (2000). Estimation of leaf area and its vertical distribution during growth period. Agricultural and Forest Meteorology, 101(4), 237–246. https://doi.org/10.1016/S0168-1923(00)00089-7

    Article  Google Scholar 

  • Ryu, D. K., Kang, S. W., Ngo, V. D., Chung, S. O., Choi, J. M., Park, S. U., & Kim, S. J. (2014). Control of temperature, humidity, and CO2 concentration in small-sized experimental plant factory. Acta Horticulturae. https://doi.org/10.17660/ActaHortic.2014.1037.59

  • Sago, Y. (2016). Effects of light intensity and growth rate on tipburn development and leaf calcium concentration in butterhead lettuce. HortScience, 51(9), 1087–1091. https://doi.org/10.21273/HORTSCI10668-16

    Article  CAS  Google Scholar 

  • Seginer, I. (1997). Some artificial neural network applications to greenhouse environmental control. Computers and Electronics in Agriculture, 18(2–3), 167–186.

    Article  Google Scholar 

  • Seginer, I., Straten, G., & Buwalda, F. (1997). Nitrate concentration in greenhouse lettuce: A modeling study. International Society for Horticultural Science, 456, 189–198.

    Google Scholar 

  • Shao, M., Liu, W., Zha, L., Zhou, C., Zhang, Y., & Li, B. (2020). Differential effects of high light duration on growth, nutritional quality, and oxidative stress of hydroponic lettuce under red and blue LED irradiation. Scientia Horticulturae, 268, 109366. https://doi.org/10.1016/j.scienta.2020.109366

    Article  CAS  Google Scholar 

  • Shimamura, S., Uehara, K., & Koakutsu, S. (2019). Automatic identifcation of plant physiological disorders in plant factory using convolutional neural networks. The Society of Digital Information and Wireless Communications.

    Google Scholar 

  • Shimizu, H., Saito, Y., Nakashima, H., Miyasaka, J., & Ohdoi, K. (2011). Light environment optimization for lettuce growth in plant factory. IFAC Proceedings Volumes, 44(1), 605–609. https://doi.org/10.3182/20110828-6-IT-1002.02683

    Article  Google Scholar 

  • Shrestha, D., Steward, B. L., & Kaspar, T. (2021). Determination of early stage corn plant height using stereo-vision.

    Google Scholar 

  • Sim, H. S., Kim, D. S., Ahn, M. G., Ahn, S. R., & Kim, S. K. (2020). Prediction of strawberry growth and fruit yield based on environmental and growth data in a greenhouse for soil cultivation with applied autonomous facilities. Korean Society for Horticultural Science.

    Google Scholar 

  • Simko, I., Jimenez-Berni, J. A., & Furbank, R. T. (2015). Detection of decay in fresh-cut lettuce using hyperspectral imaging and chlorophyll fluorescence imaging. Postharvest Biology and Technology, 106, 44–52. https://doi.org/10.1016/j.postharvbio.2015.04.007

    Article  CAS  Google Scholar 

  • Singh, D., Jain, N., Jain, P., Kayal, P., Kumawat, S., & Batra, N. (2020). PlantDoc: A dataset for visual plant disease detection. In Proceedings of the 7th ACM IKDD CoDS and 25th COMAD (pp. 249–253). ACM. https://doi.org/10.1145/3371158.3371196

    Chapter  Google Scholar 

  • Smith, H. L., McAusland, L., & Murchie, E. H. (2017). Don’t ignore the green light: Exploring diverse roles in plant processes. Journal of Experimental Botany, 68(9), 2099–2110. https://doi.org/10.1093/jxb/erx098

    Article  CAS  PubMed  Google Scholar 

  • Soderkvist, O. J. O. (2001). Computer vision classifcation of leaves from Swedish trees.

    Google Scholar 

  • Son, K.-H., Jeon, Y.-M., & Oh, M.-M. (2016). Application of supplementary white and pulsed light-emitting diodes to lettuce grown in a plant factory with artificial lighting. Horticulture, Environment, and Biotechnology, 57(6), 560–572. https://doi.org/10.1007/s13580-016-0068-y

    Article  Google Scholar 

  • Tian, Z., Ma, W., Yang, Q., & Duan, F. (2021). Application status and challenges of machine vision in plant factory—A review. Information Processing in Agriculture. https://doi.org/10.1016/j.inpa.2021.06.003

  • Ting, K. C., Lin, T., & Davidson, P. C. (2016). Integrated urban controlled environment agriculture systems. In T. Kozai, K. Fujiwara, & E. S. Runkle (Eds.), LED lighting for urban agriculture (pp. 19–36). Springer. https://doi.org/10.1007/978-981-10-1848-0_2

    Chapter  Google Scholar 

  • Tzounis, A., Katsoulas, N., Bartzanas, T., & Kittas, C. (2017). Internet of Things in agriculture, recent advances and future challenges. Biosystems Engineering, 164, 31–48. https://doi.org/10.1016/j.biosystemseng.2017.09.007

    Article  Google Scholar 

  • United Nations. (2019). World urbanization prospects: The 2018 revision. UN.

    Google Scholar 

  • Vandenberghe, B., Depuydt, S., & Messem, A. V. (2018). How to make sense of 3D representations for plant phenotyping: A compendium of processing and analysis techniques. OSF Preprints.

    Google Scholar 

  • Vanthoor, B. H. E., de Visser, P. H. B., Stanghellini, C., & van Henten, E. J. (2011a). A methodology for model-based greenhouse design: Part 2, description and validation of a tomato yield model. Biosystems Engineering, 110(4), 378–395. https://doi.org/10.1016/j.biosystemseng.2011.08.005

    Article  Google Scholar 

  • Vanthoor, B. H. E., Stanghellini, C., van Henten, E. J., & de Visser, P. H. B. (2011b). A methodology for model-based greenhouse design: Part 1, a greenhouse climate model for a broad range of designs and climates. Biosystems Engineering, 110(4), 363–377. https://doi.org/10.1016/j.biosystemseng.2011.06.001

    Article  Google Scholar 

  • Vanthoor, B. H. E., Van Henten, E. J., Stanghellini, C., & De Visser, P. H. B. (2011c). A methodology for model-based greenhouse design: Part 3, sensitivity analysis of a combined greenhouse climate-crop yield model. Biosystems Engineering, 110(4), 396–412.

    Article  Google Scholar 

  • Wang, C., Du, P., Wu, H., Li, J., Zhao, C., & Zhu, H. (2021a). A cucumber leaf disease severity classification method based on the fusion of DeepLabV3+ and U-Net. Computers and Electronics in Agriculture, 189, 106373. https://doi.org/10.1016/j.compag.2021.106373

    Article  Google Scholar 

  • Wang, H., Gu, M., Cui, J., Shi, K., Zhou, Y., & Yu, J. (2009). Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. Journal of Photochemistry and Photobiology B: Biology, 96(1), 30–37. https://doi.org/10.1016/j.jphotobiol.2009.03.010

    Article  CAS  Google Scholar 

  • Wang, J., Yu, L., Yang, J., & Dong, H. (2021b). DBA_SSD: A novel end-to-end object detection algorithm applied to plant disease detection. Information, 12(11), 474. https://doi.org/10.3390/info12110474

    Article  Google Scholar 

  • Wang, W., Zhang, M., Liu, C., Li, M., & Liu, G. (2013). Real-time monitoring of environmental information and modeling of the photosynthetic rate of tomato plants under greenhouse conditions. Applied Engineering in Agriculture, 29(5), 783–792.

    Google Scholar 

  • Werbos, P. J. (1990). Backpropagation through time: What it does and how to do it. Proceedings of the IEEE, 78(10), 1550–1560. https://doi.org/10.1109/5.58337

    Article  Google Scholar 

  • Wijaya, R., Hariono, B., Saputra, T. W., & Rukmi, D. L. (2020). Development of plant monitoring systems based on multi-camera image processing techniques on hydroponic system. IOP Conference Series: Earth and Environmental Science, 411(1), 012002. https://doi.org/10.1088/1755-1315/411/1/012002

    Article  Google Scholar 

  • Worrall, G., Rangarajan, A., & Judge, J. (2021). Domain-guided machine learning for remotely sensed in-season crop growth estimation. ArXiv:2106.13323 [Cs]. http://arxiv.org/abs/2106.13323

  • Wu, S. G., Bao, F. S., Xu, E. Y., Wang, Y.-X., Chang, Y.-F., & Xiang, Q.-L. (2007). A leaf recognition algorithm for plant classification using probabilistic neural network. In 2007 IEEE international symposium on signal processing and information technology (pp. 11–16). IEEE. https://doi.org/10.1109/ISSPIT.2007.4458016

    Chapter  Google Scholar 

  • Wu, Z., Yang, R., Gao, F., Wang, W., Fu, L., & Li, R. (2021). Segmentation of abnormal leaves of hydroponic lettuce based on DeepLabV3+ for robotic sorting. Computers and Electronics in Agriculture, 190, 106443. https://doi.org/10.1016/j.compag.2021.106443

    Article  Google Scholar 

  • Xia, F., Yang, L. T., Wang, L., & Vinel, A. (2012). Internet of things. International Journal of Communication Systems, 25(9), 1101–1102. https://doi.org/10.1002/dac.2417

    Article  Google Scholar 

  • Xu, D., Ahmed, H. A., Tong, Y., Yang, Q., & van Willigenburg, L. G. (2021). Optimal control as a tool to investigate the profitability of a Chinese plant factory—Lettuce production system. Biosystems Engineering, 208, 319–332. https://doi.org/10.1016/j.biosystemseng.2021.05.014

    Article  CAS  Google Scholar 

  • Xu, D., Du, S., & van Willigenburg, G. (2018). Adaptive two time-scale receding horizon optimal control for greenhouse lettuce cultivation. Computers and Electronics in Agriculture, 146, 93–103. https://doi.org/10.1016/j.compag.2018.02.001

    Article  Google Scholar 

  • Yang, Q. C. (2019). Plant factory. Tsinghua Unveristy Press.

    Google Scholar 

  • Yang, S., Zheng, L., Gao, W., Wang, B., Hao, X., Mi, J., & Wang, M. (2020). An efficient processing approach for colored point cloud-based high-throughput seedling phenotyping. Remote Sensing, 12(10), 1540. https://doi.org/10.3390/rs12101540

    Article  Google Scholar 

  • Yeh, Y.-H. F., Lai, T.-C., Liu, T.-Y., Liu, C.-C., Chung, W.-C., & Lin, T.-T. (2014). An automated growth measurement system for leafy vegetables. Biosystems Engineering, 117, 43–50. https://doi.org/10.1016/j.biosystemseng.2013.08.011

    Article  Google Scholar 

  • Yin, X., Struik, P. C., & Goudriaan, J. (2021). On the needs for combining physiological principles and mathematics to improve crop models. Field Crops Research, 271, 108254. https://doi.org/10.1016/j.fcr.2021.108254

    Article  Google Scholar 

  • Zaborowicz, M., Boniecki, P., Koszela, K., Przybylak, A., & PrzybyĹ‚, J. (2017). Application of neural image analysis in evaluating the quality of greenhouse tomatoes. Scientia Horticulturae, 218, 222–229.

    Article  Google Scholar 

  • Zaidi, M. A., Murase, H., & Honami, N. (1999). Neural network model for the evaluation of lettuce plant growth. Journal of Agricultural Engineering Research, 74(3), 237–242. https://doi.org/10.1006/jaer.1999.0452

    Article  Google Scholar 

  • Zhang, X., He, D., Niu, G., Yan, Z., & Song, J. (2018a). Effects of environment lighting on the growth, photosynthesis, and quality of hydroponic lettuce in a plant factory. International Journal of Agricultural and Biological Engineering, 11(2), 33–40. https://doi.org/10.25165/ijabe.v11i2.3420

    Article  Google Scholar 

  • Zhang, J., Pu, R., & Huang, W. (2012). Using in-situ hyperspectral data for detecting and discriminating yellow rust disease from nutrient stresses. Field Crops Research, 134, 165–174. https://doi.org/10.1016/j.fcr.2012.05.011

    Article  Google Scholar 

  • Zhang, K., Wu, Q., Liu, A., & Meng, X. (2018b). Can deep learning identify tomato leaf disease? Advances in Multimedia, 2018, 1–10. https://doi.org/10.1155/2018/6710865

    Article  Google Scholar 

  • Zhang, L., Xu, Z., Xu, D., Ma, J., Chen, Y., & Fu, Z. (2020). Growth monitoring of greenhouse lettuce based on a convolutional neural network. Horticulture Research, 7(1), 124. https://doi.org/10.1038/s41438-020-00345-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao, C., Liu, B., Xiao, L., Hoogenboom, G., Boote, K. J., Kassie, B. T., Pavan, W., Shelia, V., Kim, K. S., Hernandez-Ochoa, I. M., Wallach, D., Porter, C. H., Stockle, C. O., Zhu, Y., & Asseng, S. (2019). A simple crop model. European Journal of Agronomy, 104, 97–106. https://doi.org/10.1016/j.eja.2019.01.009

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lin, Z., Wang, S., Fu, R., Ting, KC., Lin, T. (2022). Data-Driven Modeling for Crop Growth in Plant Factories. In: Ma, S., Lin, T., Mao, E., Song, Z., Ting, KC. (eds) Sensing, Data Managing, and Control Technologies for Agricultural Systems. Agriculture Automation and Control. Springer, Cham. https://doi.org/10.1007/978-3-031-03834-1_5

Download citation

Publish with us

Policies and ethics