Skip to main content

Introduction to Lasers and Processing's of Materials

  • Chapter
  • First Online:
Advanced Engineering of Materials Through Lasers

Abstract

LASER (Light Amplification by Stimulated Emission of Radiation) is an Electromagnetic Radiation. The LASER beam is of coherent and monochromatic characteristics. The coherent LASER beam can propagate in a straight line with minor divergence. The primary classification of the LASER beam is the pulsed and continuous mode in a wide range of wavelengths, energy/power, and configurations. LASER's wide range of commercial availability caters to the application in ordinary to most sophisticated devices for industrial, scientific, medical, and defense actions. In this contribution, we corroborate an overview of the Materials Processing. The covered processes are sketchily classified into two major categories as Laser-assisted micro/nano processing and Laser-assisted bulk processing. The laser-assisted micro/nano processing is primarily subclassified into the deposition, patterning/engraving, cutting, and joining, secondly, classified as Machining, Surface cleaning/engineering, bimetallic joining, forming, honing, hardening, peening, and open-air nitriding. This chapter highlights current developments, research and development, and outstanding questions by quickly introducing relevant papers’ fundamentals and most recent updates. We begin by looking at laser applications, principles of laser-matter interactions, and laser material processing classifications. The main emphasis of the topic is on laser surface modification, which has attracted the interest of industry and the scientific community due to its technological relevance and obstacles. Incidentally, a specific comment is substantiated about open-air Laser nitriding, shock peening, and honing that remains a challenging and unaccomplished proposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altıparmak, S.C., Yardley, V.A., Shi, Z., Lin, J.: Challenges in additive manufacturing of high-strength aluminium alloys and current developments in hybrid additive manufacturing. Int. J. Light. Mater. Manuf. 4, 246–261 (2020)

    Google Scholar 

  2. Gao, W., Zhang, Y., Ramanujan, D., Ramani, K., Chen, Y., Williams, C., Wang, C.C., Shin, Y.C., Zhang, S., Zavattieri, P.: The status, challenges, and future of additive manufacturing in engineering. Comput.-Aided Des. 69, 65–89 (2015)

    Google Scholar 

  3. Ngo, T., Kashani, A., Imbalzano, G., Nguyen, K.T., Hui, D.: Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos. Part B Eng. 143, 172–196 (2018)

    Article  Google Scholar 

  4. Mede, T., Kocjan, A., Paulin, I., Godec, M.: Numerical mesoscale modelling of microstructure evolution during selective laser melting. Metals 10, 800 (2020)

    Article  Google Scholar 

  5. Sunil Pathak Dutta, B., Froes, F.H.: The additive manufacturing (AM) of titanium alloys. In: Qian, M., Froes, F.H., (eds.) Titanium Powder Metallurgy, pp. 447–468. Butterworth-Heinemann, Boston, MA, USA (2015)

    Google Scholar 

  6. Siwick, B.J., Arslan, I., Wang, X.: Frontier nonequilibrium materials science enabled by ultrafast electron methods. MRS Bull. (2021)

    Google Scholar 

  7. Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: a review. Virtual Phys. Prototyp. 15, 87–105 (2019)

    Article  Google Scholar 

  8. Yang, M., Wang, L., Yan, W.: Phase-field modeling of grain evolutions in additive manufacturing from nucleation, growth, to coarsening. NPJ Comput. Mater. 7, 56 (2021)

    Article  Google Scholar 

  9. Hoppius, J.S., Kukreja, L.M., Knyazeva, M., Pohl, F.: On femtosecond laser shock peening of stainless steel AISI 316. Appl. Surf. Sci. 435,1120–1124 (2018)

    Google Scholar 

  10. Duff W.H., Zhigilei, L.V.: Computational study of cooling rates and recrystallization kinetics in short pulse laser quenching of metal targets. J. Phys.: Conf. Series 59, 413–417 (2007)

    Google Scholar 

  11. Noack, J., Hammer, D.X., Noojin, G.D., Rockwell, B.A., Vogel, A.: Influence of pulse duration on mechanical effects after laser-induced breakdown in water. J. Appl. Phys. 83(12), 7488–7495 (1998)

    Article  Google Scholar 

  12. Lee, D., Kannatey-Asibu, E.: Experimental investigation of laser shock peening using femtosecond laser pulses. J. Laser Appl. 23(2), 022004 (2011)

    Article  Google Scholar 

  13. Fabbro, R., Fournier, J., Ballard, P., Devaux, D., Virmont, J.: Physical study of laser-produced plasma in confined geometry. J. Appl. Phys. 68(2), 775–784 (1990)

    Article  Google Scholar 

  14. Takata, T., Enoki, M., Chivavibul, P., Matsui, A., Kobayashi, Y.: Effect of confinement layer on laser ablation and cavitation bubble during laser shock peening. Mater. Trans. 57(10), 1776–1783 (2016)

    Article  Google Scholar 

  15. Takata, T., Enoki, M., Chivavibul, P., Matsui, A., Kobayashi, Y.: Acoustic emission monitoring of laser shock peening by detection of underwater acoustic wave. Mater. Trans. 57(5), 674–680 (2016)

    Article  Google Scholar 

  16. Barker, L.M., Hollenbach, R.E.: Laser interferometer for measuring high velocities of any reflecting surface. J. Appl. Phys. 43(11), 4669–4675 (1972)

    Article  Google Scholar 

  17. Takemoto, M., Nakamura, M., Masano, S., Ueno, S.: Effect of shot peening on the delayed fracture using the almen strip and ae technique. J. Acoustic Emission 27 (2009); Segur J.B., Oberstar, H.E.: Ind. Eng. Chem. 43 2117–2120 (1951)

    Google Scholar 

  18. Ito, K., Enoki, M.: Acquisition and analysis of continuous acoustic emission waveform for classification of damage sources in ceramic fiber mat. Mater. Trans. 48(6), 1221–1226 (2007)

    Article  Google Scholar 

  19. Montross, C.S., Wei, T., Ye, L., Clark, G., Mai, Y.-W.: Laser shock processing and its effects on microstructure and properties of metal alloys: a review. Int. J. Fatigue 1021–1036 (2002)

    Google Scholar 

  20. Niehoff, H.S., Vollertson, F.: Laser induced shock waves in deformation processing. Metalurgija-J. Metall. 183–194 (2005)

    Google Scholar 

  21. Wang, Y., Fan, Y., Vukelic, S., Yao, Y.L.: Energy-level effects on the deformation mechanism in microscale laser peen forming. J. Manuf. Process. 1–12 (2007)

    Google Scholar 

  22. Kannatey-Asibu, E., Jr., Lathia, B.: Laser forming by shock peening. Trans. NAMRI 35, 401–407 (2007)

    Google Scholar 

  23. Hackel, L., Harris, F.: Contour forming of metals by laser peening. U.S. Patent No. 6,410,884 (2002)

    Google Scholar 

  24. Hackel, L., Harris, F.: Pre-loading of components during laser peen forming. U.S. Patent No. 6,670,578 (2002)

    Google Scholar 

  25. Ocaña, J.L., Morales, M., García-Ballesterosa, J.J., Porro, J.A., García, O., Molpeceres, C.: Laser shock microforming of thin metal sheets. Appl. Surf. Sci. 255, 5633–5636 (2009)

    Article  Google Scholar 

  26. Wang, Y., Fan, Y., Kysar, J.W., Vukelic, S., Yao, Y.L.: Microscale laser peen forming of single crystal. J. Appl. Phys. 103(6), 063525 (2008)

    Article  Google Scholar 

  27. Ding, K., Ye, L.: Three-dimensional dynamic finite element analysis of multiple laser shock peening processes. Surf. Eng. 19(5), 351–358 (2003)

    Article  Google Scholar 

  28. Hu, Y.X., Yao, Z.Q., Hu, J.: 3-D fem simulation of laser shock processing. Surf. Coat. Technol. 201(3–4), 1426–1435 (2006)

    Article  Google Scholar 

  29. Amarchinta, H.K., Grandhi, R.V., Langer, K., Stargel, D.S.: Material model validation for laser shock peening process simulation. Modell. Simul. Mater. Sci. Eng. 17(1), 015010 (2009)

    Article  Google Scholar 

  30. Hu, Y.X., Yao, Z.Q.: Numerical simulation and experimentation of overlapping laser shock processing with symmetry Cell. Int. J. Mach. Tools Manuf. 48(2), 152–162 (2008)

    Article  Google Scholar 

  31. Ocaña, J.L., Moralesa, M., Molpeceresa, C., García, O., Porro, J.A., García-Ballesteros, J.J.: Short pulse laser microforming of thin metal sheets for MEMS manufacturing. Appl. Surf. Sci. 254(4), 997–1001 (2007)

    Article  Google Scholar 

  32. Geiger, M., Kleiner, M., Eckstein, R., Tiesler, N., Engel, U.: Microforming. CIRP Ann. Manuf. Technol. 50(2), 445–462 (2001)

    Article  Google Scholar 

  33. Johnson, G., Cook, W.: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Michael, J.M., Joseph, E.B. (eds.) Proceedings of the 7th International Symposium on Ballistics, International Ballistics Committee, pp. 541–547. The Hague, Netherlands (1983)

    Google Scholar 

  34. Peyre, P., Chaieb, A.I., Braham, A.C.: Fem calculation of residual stresses induced by laser shock processing in stainless steels. Modell. Simul. Mater. Sci. Eng. 15(3), 205–221 (2007)

    Article  Google Scholar 

  35. Shukla, A.K., Akash, K., Palani, I.A., Manivannan, A.: Laser assisted wet texturing of flexible polyethylene terephthalate substrate using Nd3+: YAG laser for photovoltaics devices. Mater. Sci. Eng.: B 226, 78–85 (2017)

    Google Scholar 

  36. Berthe, L., Fabbro, R., Peyre, P., Tollier, L., Bartnicki, E.: Shock waves from a water-confined laser-generated plasma. J. Appl. Phys. 82(6), 2826–2832 (1997)

    Article  Google Scholar 

  37. Zhang, W., Yao, Y.L., Noyan, I.C.: Microscale laser shock peening of thin films, part 1: experiment, modeling and simulation. ASME J. Manuf. Sci. Eng. 126(1), 10–17 (2004)

    Article  Google Scholar 

  38. Meyers, M.A., Benson, D.J., Voringer, O., Kad, B.K., Xue, Q., Fu, H.-H.: Constitutive description of dynamic deformation: physically-based mechanisms. Mater. Sci. Eng., A, 322(1–2), 194–216 (2002)

    Google Scholar 

  39. Gilman, J.J.: Dislocation dynamics and the response of materials to impact. Appl. Mech. Rev. 218, 767–783 (1968)

    Google Scholar 

  40. Leu, D.-K.: Modeling of size effect on tensile flow stress of sheet metal in micro forming. ASME J. Manuf. Sci. Eng. 131(1), 011002 (2009)

    Article  Google Scholar 

  41. Engel, U., Eckstein, R.: Micro forming—from basic research to its realization. J. Mater. Process. Technol. 125–126, 35–44 (2002)

    Article  Google Scholar 

  42. Kennedy, D., Rockwell, H.B.: Laser-Induced Breakdown In Aqueous Media, vol. 21, pp. 155–248. Elsevier Science Ltd.

    Google Scholar 

  43. Martí-López, L., Ocaña, R., Piñeiro, E., Asensio, A.: Laser peening induced shock waves and cavitation bubbles in water studied by optical schlieren visualization. Phys. Procedia 12, 442–451 (2011)

    Google Scholar 

  44. H. Lee, A. Gojani, T. Han, J. Yoh. Dynamics of laser-induced bubble collapse visualized by time-resolved optical shadowgraph. Journal of Visualization, 14, 331–337.

    Google Scholar 

  45. Vogel, A., Busch, S., Parlitz, U.: J. Acoustical Soc. Am. 100, 148; Cole, R.H.: Underwater Explosions. Princeton University Press

    Google Scholar 

  46. Segur, J.B., Oberstar, H.E.: Viscosity of glycerol and its aqueous solutions. Indus. Eng. Chem. 43(9), 2117–2120 (1951); Ito, K., Enoki, M.: Mater. Trans. 48, 1221–1226 (2007)

    Google Scholar 

  47. Sause, M.G.R.: Investigation of pencil-lead breaks as acoustic emission sources (2011)

    Google Scholar 

  48. Buttle, D.J., Scruby, C.B.: Characterization of particle impact by quantitative acoustic emission. Wear 137(1), 63–90 (1990)

    Article  Google Scholar 

  49. Philipp, A., Lauterborn, W.: Cavitation erosion by single laser-produced bubbles. J. Fluid Mech. 361, 75–116 (1998)

    Article  MATH  Google Scholar 

  50. Ma, C., Wang, C., Gao, B., Adams, J., Wu, G., Zhang, H.: Recent progress in ultrafast lasers based on 2D materials as a saturable absorber. Appl. Phys. Rev. 6(4), 041304 (2019)

    Google Scholar 

  51. Ohl, C.D.: Cavitation incep221tion following shock wave passage. Phys. Fluids 14(10), 3512–3521 (2002)

    Article  MATH  Google Scholar 

  52. Ouyang, P., Li, P., Leksina, E.G., Michurin, S.V., He, L.: Effect of liquid properties on laser ablation of aluminum and titanium alloys. Appl. Surf. Sci. 360, 880–888 (2016)

    Google Scholar 

  53. Mukai, N., Aoki, N., Obata, M., Ito, A., Sano, Y., Konagai, C.: Proceedings of 3rd JSME/ASME International Conference on Nuclear Engineering (ICONE-3), p. III-1489. Kyoto (1995)

    Google Scholar 

  54. Ochi, Y., Masaki, K., Matsumura, T., Wakabayashi, Y., Sano, Y., Kubo, T.: Proceedings of 12th International Conference on Experimental Mechanics (ICEM12). Bari (2004).

    Google Scholar 

  55. Altenberger, I., Sano, Y., Nikitin, I., Scholtes, B.: Proceedings of 9th International Fatigue Congress (FATIGUE 2006). Atlanta (2006)

    Google Scholar 

  56. Ochi, Y., Masaki, K., Matsumura, T., Kumagai, Y., Hamaguchi, T., Sano, Y.: Proceedings of International Conference on Advanced Materials Development and Performance (AMDP2005). Auckland (2005)

    Google Scholar 

  57. Sano, Y., Obata, M., Kubo, T., Mukai, N., Yoda, M., Masaki, K., Ochi, Y.: Mater. Sci. Eng. A 417, 334 (2006)

    Article  Google Scholar 

  58. Sano, Y., Kimura, M., Sato, K., Obata, M., Sudo, A., Hamamoto, Y., Shima, S., Ichikawa, Y., Yamazaki, H., Naruse, M., Hida, S., Watanabe, T., Oono, Y.: Proceedings of 8th International Conference on Nuclear Engineering (ICONE-8). Baltimore (2000)

    Google Scholar 

  59. Delloro, F., Zagouri, D., Boustie, M., Jeandin, M.: A laser shock approach to cold spray. In: Materials Science Forum, vol. 941, pp. 1833–1840. Trans Tech Publications Ltd (2018)

    Google Scholar 

  60. Fabbro, R., Peyre, P., Berthe, L., Scherpereel, X.: Physics and applications of laser-shock processing. J. Laser Appl. 10(6), 265–279 (1998)

    Article  Google Scholar 

  61. Masaki, K., Ochi, Y., Matsumura, T.: Initiation and propagation behaviour of fatigue cracks in hard-shot peened type 316L steel in high cycle fatigue. Fatigue Fract. Eng. Mater. Struct. 27(12), 1137–1145 (2004)

    Article  Google Scholar 

  62. Nalla, R.K., Altenberger, I., Noster, U., Liu, G.Y., Scholtes, B., Ritchie, R.O.: On the influence of mechanical surface treatments—deep rolling and laser shock peening—on the fatigue behavior of Ti–6Al–4V at ambient and elevated temperatures. Mater. Sci. Eng., A 355(1–2), 216–230 (2003)

    Article  Google Scholar 

  63. Sathyajith, S., Kalainathan, S.: Effect of laser shot peening on precipitation hardened aluminum alloy 6061–T6 using low energy laser. Opt. Lasers Eng. 50(3), 345–348 (2012)

    Article  Google Scholar 

  64. Sathyajith, S., Kalainathan, S., Swaroop, S.: Laser shot peening of 304 austenitic stainless steel without protective coating. In: Materials Science Forum, vol. 699, pp. 131–140. Trans Tech Publications Ltd. (2012)

    Google Scholar 

  65. Schmidt-Uhlig, T., Karlitschek, P., Yoda, M., Sano, Y., Marowsky, G.: Laser shock processing with 20 MW laser pulses delivered by optical fibers. Euro. Phys. J. Appl. Phys. 9(3), 235–238 (2000)

    Article  Google Scholar 

  66. Chichkov, B.N., Momma, C., Nolte, S., Von Alvensleben, F., Tünnermann, A.: Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys; A 63(2), 109–115 (1996)

    Google Scholar 

  67. Shukla, A.K., Yadav, V.M., Kumar, A., Palani, I.A., Manivannan, A.: Investigations on effect of laser-induced self-assembled patterning on optical properties of flexible polyimide substrates for solar cell applications. J. Phys. D: Appl. Phys. 51(4), 045502 (2018)

    Google Scholar 

  68. Lazarus, N., Smith, G.L.: Laser forming for complex 3D folding. Adv. Mater. Technol. 2(10), 1700109 (2017)

    Article  Google Scholar 

  69. Johnson, G.R.: A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures. In: Proceedings of the 7th International Symposium on Ballistics, pp. 541–547. The Hague, The Netherlands (1983)

    Google Scholar 

  70. Hfaiedh, N., Peyre, P., Song, H., Popa, I., Ji, V., Vignal, V.: Finite element analysis of laser shock peening of 2050–T8 aluminum alloy. Int. J. Fatigue 70, 480–489 (2015)

    Article  Google Scholar 

  71. Cuq-Lelandais, J.P.: Etude du Comportement Dynamique de Matériaux Sous Choc Laser Subpicoseconde. Ph.D. Thesis, ISAE-ENSMA Ecole Nationale Supérieure de Mécanique et d’Aérotechique, Poitiers, France (2010)

    Google Scholar 

  72. Fabbro, R., Fournier, J., Ballard, P., Devaux, D., Virmont, J.: Physical study of laser-produced plasma in confined geometry. J. Appl. Phys. 68, 775–784 (1990)

    Article  Google Scholar 

  73. Peyre, P., Berthe, L., Scherpereel, X., Fabbro, R., Bartnicki, E.: Experimental study of laser-driven shock waves in stainless steels. J. Appl. Phys. 84, 5985–5992 (1998)

    Article  Google Scholar 

  74. Pope, R.M., Fry, E.S.: Absorption spectrum (380–700 nm) of pure water. II. Integr. Cavity Meas. Appl. Opt. 36, 8710–8723 (1997)

    Google Scholar 

  75. Peyre, P., Berthe, L., Vignal, V., Popa, I., Baudin, T.: Analysis of laser shock waves and resulting surface deformations in an Al–Cu–Li aluminum alloy. J. Phys. D Appl. Phys. 45, 335304 (2012)

    Article  Google Scholar 

  76. Boustie, M., Cuq-Lelandais, J., Bolis, C., Berthe, L., Barradas, S., Arrigoni, M., De Resseguier, T., Jeandin, M.: Study of damage phenomena induced by edge effects into materials under laser driven shocks. J. Phys. D Appl. Phys. 40, 7103 (2007)

    Article  Google Scholar 

  77. Sano, Y., Kimura, M., Yoda, M., Mukai, N., Sato, K., Uehara, T., Ito, T., Shimamura, M., Sudo, A., Suezono, N.: Development of fiber-delivered laser peening system to prevent stress corrosion cracking of reactor components (2001)

    Google Scholar 

  78. Nie, X., He, W., Zang, S., Wang, X., Zhao, J.: Effect study and application to improve high cycle fatigue resistance of TC11 titanium alloy by laser shock peening with multiple impacts. Surf. Coat. Technol. 253, 68–75 (2014)

    Article  Google Scholar 

  79. Ren, X.D., Zhou, W.F., Liu, F.F., Ren, Y.P., Yuan, S.Q., Ren, N.F., Xu, S.D., Yang, T.: Microstructure evolution and grain refinement of Ti-6Al-4V alloy by laser shock processing. Appl. Surf. Sci. 363, 44–49 (2016)

    Article  Google Scholar 

  80. Lou, S., Li, Y., Zhou, L., Nie, X., He, G., He, W.: Surface nanocrystallization of metallic alloys with different stacking fault energy induced by laser shock processing. Mater. Des. 104, 320–326 (2016)

    Article  Google Scholar 

  81. Hongchao, Q.: Experimental investigation of laser peening on Ti17 titanium alloy for rotor blade applications. Appl. Surf. Sci. 351, 524–530 (2015)

    Article  Google Scholar 

  82. Tong, Z., Ren, X., Ren, Y., Dai, F., Ye, Y., Zhou, W., Chen, L., Ye, Z.: Effect of laser shock peening on microstructure and hot corrosion of TC11 alloy. Surf. Coat. Technol. 335, 32–40 (2018)

    Article  Google Scholar 

  83. Sollier, A., Berthe, L., Fabbro, R.: Numerical modeling of the transmission of breakdown plasma generated in water during laser shock processing. EPJ Appl. Phys. 16, 131–139 (2001)

    Article  Google Scholar 

  84. Wu, B., Shin, Y.C.: A self-closed thermal model for laser shock peening under the water confinement regime configuration and comparisons to experiments. J. Appl. Phys. 97, 113517 (2005)

    Article  Google Scholar 

  85. Askar’yan, G.A., Moroz, E.M.: Pressure on evaporation of matter in a radiation beam. Sov. J. Exp. Theor. Phys. 16, 1638 (1963)

    Google Scholar 

  86. Anderholm, N.C.: Laser-generated stress waves. Appl. Phys. Lett. 16(3), 113–115 (1970)

    Article  Google Scholar 

  87. Fairand, B.P., Wilcox, B.A., Gallagher, W.J., Williams, D.N.: Laser shock-induced microstructural and mechanical property changes in 7075 aluminums. J. Appl. Phys. 43, 3893–3895 (1972)

    Article  Google Scholar 

  88. Peyre, P., Fabbro, R., Merrien, P., Lieurade, H.: Laser shock processing of aluminum alloys. Application to high cycle fatigue behaviour. Mater. Sci. Eng. A 210, 102–113 (1996)

    Google Scholar 

  89. Pavan, M., Furfari, D., Ahmad, B., Gharghouri, M., Fitzpatrick, M.: Fatigue crack growth in a laser shock peened residual stress field. Int. J. Fatigue 123, 157–167 (2019)

    Article  Google Scholar 

  90. Dhakal, B., Swaroop, S.: Review: laser shock peening as post welding treatment technique. J. Manuf. Process. 32, 721–733 (2018)

    Article  Google Scholar 

  91. Sun, R., Li, L., Guo, W., Peng, P., Zhai, T., Che, Z., Li, B., Guo, C., Zhu, Y.: Laser shock peening induced fatigue crack retardation in Ti-17 titanium alloy. Mater. Sci. Eng. A 737, 94–104 (2018)

    Article  Google Scholar 

  92. Peyre, P., Scherpereel, X., Berthe, L., Carboni, C., Fabbro, R., Béranger, G., Lemaitre, C.: Surface modifications induced in 316L steel by laser peening and shot peening. Influence on pitting corrosion resistance. Mater. Sci. Eng. A 280, 294–302 (2000)

    Google Scholar 

  93. Devaux, D., Fabbro, R., Virmont, J.: Generation of shock-waves by laser-matter interaction in confined geometries. J. Phys. Iv 1, 179–182 (1991)

    Google Scholar 

  94. Peyre, P., Fabbro, R.: Laser shock processing: a review of the physics and applications. Opt. Quantum Electron. 27, 1213–1229 (1995)

    Google Scholar 

  95. Berthe, L., Fabbro, R., Peyre, P., Tollier, L., Bartnicki, E.: Shock waves from a waterconfined laser-generated plasma. J. Appl. Phys. 82, 2826–2832 (1997)

    Article  Google Scholar 

  96. Fabbro, R., Peyre, P., Berthe, L., Scherpereel, X.: Physics and applications of lasershock processing. J. Laser Appl. 10, 265–279 (1998)

    Article  Google Scholar 

  97. O'keefe, J., Skeen, C.: Laser-induced stress-wave and impulse augmentation, Appl. Phys. Lett. 21, 464–466 (1972)

    Google Scholar 

  98. Yang, L.C.: Stress waves generated in thin metallic-films by a Q-switched rubylaser. J. Appl. Phys. 45, 2601–2608 (1974)

    Article  Google Scholar 

  99. Anderholm, N.: Laser-generated stress waves. Appl. Phys. Lett. 16, 113–115 (1970)

    Article  Google Scholar 

  100. Anderholm, N., Boade, R.: Laser-induced stress waves in quartz phenolic. J. Appl. Phys. 43, 434–436 (1972)

    Article  Google Scholar 

  101. Anderholm, N.: Fast gas switch for characterizing laser output pulses. Appl. Opt. 11, 2057–2059 (1972)

    Article  Google Scholar 

  102. Wu, B.: Numerical modeling and analysis of laser-matter interactions in laser based manufacturing and materials processing with short and ultrashort lasers Ph.D. Thesis, Purdue University, West Lafayette (IN) (2007)

    Google Scholar 

  103. Gladush, G.G., Smurov, I.: Physics of laser materials processing: theory and experiment, vol. 146. Springer Science & Business Media (2011)

    Google Scholar 

  104. Yocom, C.J., Zhang, X., Liao, Y.: Research and development status of laser peen forming: a review. Opt. Laser Technol. 108, 32–45 (2018)

    Article  Google Scholar 

  105. Gusarov, A.V., Smurov, I.: Thermal model of nanosecond pulsed laser ablation: analysis of energy and mass transfer. J. Appl. Phys. 97, 014307 (2005)

    Article  Google Scholar 

  106. Mazhukin, V.I., Nossov, V.V., Smurov, I., Flamant, G.: Modelling of radiation transfer in low temperature nanosecond laser-induced plasma of Al vapour. J. Phys. D Appl. Phys. 37, 185–199 (2004)

    Article  Google Scholar 

  107. Mazhukin, V.I., Smurov, I., Flamant, G.: 2D-simulation of the system: laser beamplus laser plasma plus target. Appl. Surf. Sci. 96–8, 89–96 (1996)

    Article  Google Scholar 

  108. Zeldovich, Y.B., Raizer, Y.P.: Physics of Shock Waves and High-temperature Hydrodynamic Phenomena. Academic Press Inc., New York (1966)

    Google Scholar 

  109. More, R.M., Warren, K.H., Young, D.A., Zimmerman, G.B.: A new quotidian equation of state (Qeos) for hot dense matter. Phys. Fluids 31, 3059–3078 (1988)

    Article  MATH  Google Scholar 

  110. Hu, Y.X., Yao, Z.Q.: Overlapping rate effect on laser shock processing 1045 of steel by small spots with Nd:YAG pulsed laser. Surf. Coat. Technol. 202, 1517–1525 (2008)

    Article  Google Scholar 

  111. Ocaña, J., Morales, M., Molpeceres, C., García, O., Porro, J., García-Ballesteros, J.: Short pulse laser microforming of thin metal sheets for MEMS manufacturing. Appl. Surf. Sci. 254, 997–1001 (2007)

    Article  Google Scholar 

  112. Sagisaka, Y., Kamiya, M., Matsuda, M., Ohta, Y.: Thin-sheet-metal bending by laser peen forming with femtosecond laser. J. Mater. Process. Technol. 210, 2304–2309 (2010)

    Article  Google Scholar 

  113. Hu, Y., Luo, M., Yao, Z.: Increasing the capability of laser peen forming to bend titanium alloy sheets with laser-assisted local heating. Mater. Des. 90, 364–372 (2016)

    Article  Google Scholar 

  114. Shen, H., Vollertsen, F.: Modelling of laser forming—an review. Comput. Mater. Sci. 46, 834–840 (2009)

    Article  Google Scholar 

  115. Umapathi, A., Swaroop, S.: Residual stress distribution in a laser peened Ti-2.5 Cu alloy. Surf. Coat. Technol. 307, 38–46 (2016)

    Article  Google Scholar 

  116. Sihai, L., Xiangfan, N., Liucheng, Z., Xi, Y., Weifeng, H., Yinghong, L.: Thermal stability of surface nanostructure produced by laser shock peening in a Ni-based superalloy. Surf. Coat. Technol. 311, 337–343 (2017)

    Google Scholar 

  117. Xiao, Y., Peng, C.: Influence of laser shock peening on fatigue life of transmission gears in aeroengine. In: 2016 Prognostics and System Health Management Conference (PHM-Chengdu), pp. 1–4. IEEE (2016)

    Google Scholar 

  118. Gheisari, R., Lan, P., Polycarpou, A.A.: Efficacy of surface microtexturing in enhancing the tribological performance of polymeric surfaces under starved lubricated conditions. Wear 444, 203162 (2020)

    Article  Google Scholar 

  119. Zhu, R., Zhang, Y., Zhang, C.: Surface residual stress, micro-hardness and geometry of TC6 titanium alloy thin-wall parts processed by multiple oblique laser shock peening. Mater. Res. Exp. 7(10), 106526 (2020)

    Article  Google Scholar 

  120. Ganesh, P., Sundar, R., Kumar, H., Kaul, R., Ranganathan, K., Hedaoo, P., Raghavendra, G. et al.: Studies on fatigue life enhancement of pre-fatigued spring steel specimens using laser shock peening. Mater. Design (1980–2015) 54, 734–741 (2014)

    Google Scholar 

  121. Gujba, A.K., Medraj, M.: Laser peening process and its impact on materials properties in comparison with shot peening and ultrasonic impact peening. Materials 7(12), 7925–7974 (2014)

    Article  Google Scholar 

  122. Guarino, S., Barletta, M., Afilal, A.: High Power Diode Laser (HPDL) surface hardening of low carbon steel: Fatigue life improvement analysis. J. Manuf. Process. 28, 266–271 (2017)

    Google Scholar 

  123. Prabhakaran, S., Kalainathan, S., Shukla, P., Vasudevan, V.K.: Residual stress, phase, microstructure and mechanical property studies of ultrafine bainitic steel through laser shock peening. Optics Laser Technol. 115, 447–458 (2019)

    Google Scholar 

  124. Schaaf, P. (ed.): Laser Processing of Materials: Fundamentals, Applications and Developments, vol. 139. Springer Science & Business Media (2010)

    Google Scholar 

  125. Malinauskas, M., Žukauskas, A., Hasegawa, S., Hayasaki, Y., Mizeikis, V., Buividas, R., Juodkazis, S.: Ultrafast laser processing of materials: from science to industry. Light: Sci. Appl. 5(8), e16133–e16133 (2016)

    Google Scholar 

  126. Steen, W.M.: Arc augmented laser processing of materials. J. Appl. Phys. 51(11), 5636–5641 (1980)

    Article  Google Scholar 

  127. Perrière, J., Millon, E., Fogarassy, E. (eds).: Recent advances in laser processing of materials (2006)

    Google Scholar 

  128. Chien, C.Y., Gupta, M.C.: Pulse width effect in ultrafast laser processing of materials. Appl. Phys. A 81(6), 1257–1263 (2005)

    Article  Google Scholar 

  129. Duley, W.W.: Laser Processing and Analysis of Materials. Springer Science & Business Media (2012)

    Google Scholar 

  130. Weber, R., Hafner, M., Michalowski, A., Graf, T.: Minimum damage in CFRP laser processing. Phys. Procedia 12, 302–307 (2011)

    Article  Google Scholar 

  131. Bartkowiak, K., Ullrich, S., Frick, T., Schmidt, M.: New developments of laser processing aluminium alloys via additive manufacturing technique. Phys. Procedia 12, 393–401 (2011)

    Article  Google Scholar 

  132. Kruusing, A.: Handbook of Liquids-Assisted Laser Processing. Elsevier (2010)

    Google Scholar 

  133. Kreimeyer, M., Wagner, F., Vollertsen, F.: Laser processing of aluminum–titanium-tailored blanks. Opt. Lasers Eng. 43(9), 1021–1035 (2005)

    Article  Google Scholar 

  134. Fan, C.-H., Longtin, J.P.: Modeling optical breakdown in dielectrics during ultrafast laser processing. Appl. Opt. 40(18), 3124–3131 (2001)

    Article  Google Scholar 

  135. Besner, S., Degorce, J.-Y., Kabashin, A.V., Meunier, M.: Influence of ambient medium on femtosecond laser processing of silicon. Appl. Surface Sci. 247(1–4), 163–168 (2005)

    Google Scholar 

  136. Seyedkashi, S.M.H., Cho, J.R., Lee, S.H., Moon, Y.H.: Feasibility of underwater laser forming of laminated metal composites. Mater. Manuf. Process. 33(5), 546–551 (2018)

    Article  Google Scholar 

  137. Hu, Y., Han, Y., Yao, Z., Hu, J.: Three-dimensional numerical simulation and experimental study of sheet metal bending by laser peen forming. J. Manuf. Sci. Eng. 132(6) (2010)

    Google Scholar 

  138. Zohdi, T.I.: Ultra-fast laser-patterning computation for advanced manufacturing of powdered materials exploiting knowledge-based heat-kernels. Comput. Methods Appl. Mech. Eng. 343, 234–248 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  139. Turkyilmazoglu, M.: An analytic parametric study of rounded laser pulse heating. Optik 240, 167001 (2021)

    Article  Google Scholar 

  140. Bode, T.: Simulation of the Particle Distribution and Resulting Laser Processing of Selective Laser Melting Processes. Master's thesis, Gottfried Wilhelm Leibniz Universität, Hannover (2017)

    Google Scholar 

  141. Ding, K., Ye, L.: 1—General introduction. In: Woodhead Publishing Series in Metals and Surface Engineering, Laser Shock Peening, pp. 1–6. Woodhead Publishing (2006)

    Google Scholar 

  142. Gariépy, A., Miao, H., Lévesque, M.: Peen forming. In: Hashmi, S., Batalha, G.F., Van Tyne, C.J., Yilbas, B. (eds.) Comprehensive Materials Processing, pp. 295–329. Elsevier (2014)

    Google Scholar 

  143. Demir, K., Zhang, Z., Ben-Artzy, A., Hosemann, P., Gu, G.X.: Laser scan strategy descriptor for defect prognosis in metal additive manufacturing using neural networks. J. Manuf. Process. 67, 628–634 (2021)

    Google Scholar 

  144. Radziemski, L.J.: Lasers-Induced Plasmas and Applications. CRC Press (2020)

    Google Scholar 

  145. Scruby, C.B., Dewhurst, R.J., Hutchins, D.A., Palmer, S.B.: Quantitative studies of thermally generated elastic waves in laser-irradiated metals. J. Appl. Phys. 51(12), 6210–6216 (1980)

    Article  Google Scholar 

  146. Hutchins, D.A.: Ultrasonic generation by pulsed lasers. Phys. Acoustics 18, 21–123 (1988)

    Article  Google Scholar 

  147. Fox, J.A.: Effect of water and paint coatings on laser-irradiated targets. Appl. Phys. Lett. 24(10), 461–464 (1974)

    Article  Google Scholar 

  148. Yeung, H., Hutchinson, K., Lin, D.: Design and implementation of laser powder bed fusion additive manufacturing testbed control software. In: 2021 International Solid Freeform Fabrication Symposium. University of Texas at Austin (2021)

    Google Scholar 

  149. Yang, Y., Ragnvaldsen, O., Bai, Y., Yi, M., Xu, B.-X.: Three-dimensional non-isothermal phase-field modeling of microstructure evolution during selective laser sintering (2019). arXiv:1902.04519

  150. Xu, B.-X., Min, Y., Yang, Y.: Phase-field simulation on process-microstructure-property relation in power bed fusion additive manufactured metals.

    Google Scholar 

  151. Zohdi, T.I.: DEM extensions: higher-fidelity laser modeling. In: Modeling and Simulation of Functionalized Materials for Additive Manufacturing and 3D Printing: Continuous and Discrete Media, pp. 171–196. Springer, Cham (2018)

    Google Scholar 

  152. Apostolou, P.: High Performance Matrix-Fee Method for Large-Scale Finite Element Analysis on Graphics Processing Units. University of Pittsburgh, PhD diss. (2020)

    Google Scholar 

  153. Kim, D.H., Zohdi, T.I.: Tool path optimization of selective laser sintering processes using deep learning. Comput. Mech. 1–19 (2021)

    Google Scholar 

  154. Yu, T., Zhao, J.: Semi-coupled resolved CFD–DEM simulation of powder-based selective laser melting for additive manufacturing. Comput. Methods Appl. Mech. Eng. 377, 113707 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  155. Prabhakaran, S., Kalainathan, S.: Compound technology of manufacturing and multiple laser peening on microstructure and fatigue life of dual-phase spring steel. Mater. Sci. Eng., A 674, 634–645 (2016)

    Article  Google Scholar 

  156. Kumar, D., Idapalapati, S., Wang, W., Narasimalu, S.: Effect of surface mechanical treatments on the microstructure-property-performance of engineering alloys. Materials 12(16), 2503 (2019)

    Article  Google Scholar 

  157. Brenner, A., Bornschlegel, B., Finger, J.: Increasing productivity of ultrashort pulsed laser ablation in advance for a combination process with ns-laser. J. Laser Micro Nanoeng. 14(1), 100–107 (2019)

    Google Scholar 

  158. Pawlowski, L.: Thick laser coatings: a review. J. Therm. Spray Technol. 8(2), 279–295 (1999)

    Article  Google Scholar 

  159. Draper, C.W., Ewing, C.A.: Laser surface alloying: a bibliography. J. Mater. Sci. 19(12), 3815–3825 (1984)

    Article  Google Scholar 

  160. Riabkina-Fishman, M., Zahavi, J.: Laser alloying and cladding for improving surface properties. Appl. Surf. Sci. 106, 263–267 (1996)

    Article  Google Scholar 

  161. Cooper, K.P., Ayers, J.D.: Laser melt-particle injection processing. Surf. Eng. 1(4), 263–272 (1985)

    Article  Google Scholar 

  162. Rehn, L.E., Picraux, S.T., Wiedersich, H: Surface Alloying by Ion, Electron and Laser Beams (1986)

    Google Scholar 

  163. Kopel, A., Reitz, W.: Laser surface treatment. Adv. Mater. Process. 156(3), 39–41 (1999)

    Google Scholar 

  164. Cooper, K.P., Slebodnick, P.: Recent developments in laser melt/particle injection processing. J. Laser Appl. 1(4), 21–29 (1989)

    Article  Google Scholar 

  165. McCafferty, E., Moore, P.G.: Electrochemical behavior of laser-processed metal surfaces. In: Laser Surface Treatment of Metals, pp. 263–295. Springer, Dordrecht (1986)

    Google Scholar 

  166. Schneider, M.F.: Laser cladding. Dimensions [mm] 14, 10 (1998)

    Google Scholar 

  167. Cerri, W., Martinella, R., Mor, G.P., Bianchi, P.: Laser deposition of carbide-reinforced coatings. Surf. Coat. Technol. 49(1–3), 40–45 (1991)

    Article  Google Scholar 

  168. Barner-Kowollik, C., Bastmeyer, M., Blasco, E., Delaittre, G., Müller, P., Richter, B., Wegener, M.: 3D laser micro-and nanoprinting: challenges for chemistry. Angew. Chem. Int. Ed. 56(50), 15828–15845 (2017)

    Article  Google Scholar 

  169. Chen, T.-H., Fardel, R., Arnold C.B.: Ultrafast z-scanning for high-efficiency laser micro-machining. Light: Sci. Appl. 7(4), 17181–17181 (2018)

    Google Scholar 

  170. Geiger, M., Vollertsen, F.: The mechanisms of laser forming. CIRP Ann. 42(1), 301–304 (1993)

    Article  Google Scholar 

  171. Magee, J., Watkins, K.G., Steen, W.M.: Advances in laser forming. J. Laser Appl. 10(6), 235–246 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish K. Shukla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shukla, A.K., Kulkarni, A., Singh, S., Jayachandran, S., Sahu, A., Palani, I.A. (2022). Introduction to Lasers and Processing's of Materials. In: Radhakrishnan, J., Pathak, S. (eds) Advanced Engineering of Materials Through Lasers. Advances in Material Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-03830-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-03830-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-03829-7

  • Online ISBN: 978-3-031-03830-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics