Skip to main content

Efficiency of Constructed Wetlands and Wastewater Stabilization Ponds for Wastewater Treatment in Northern Algerian Sahara

  • Chapter
  • First Online:
Constructed Wetlands for Wastewater Treatment in Hot and Arid Climates

Part of the book series: Wetlands: Ecology, Conservation and Management ((WECM,volume 7))

  • 531 Accesses

Abstract

Algeria is facing for years a real problem of water supply. The burgeoning population, coupled with pollution and inadequate governance arrangements, are leading to the depletion of water resources, and the crisis may worsen in the coming years if nothing is done. To extend the treatment of wastewater by natural systems, several experimental pilots and full-scale wastewater treatment systems have been tested in northern Algerian Sahara such as in Brézina, Temacine and Kef el Doukhan regions. Brézina constructed wetland (CW) is a Hybrid system with horizontal subsurface flow (HSSFCW) and free water surface flow (FWSCW) beds. Temacine CW is an HSSFCW planted with 23 different plant species and macrophytes. The lagoon system of Kef el Doukhan is a wastewater stabilization pond (WSP) designed to treat the wastewater in three phases (preliminary, primary and secondary treatment). The physicochemical analyses of wastewater at the three systems’s outflows revealed that the planted HSSFCW of Temacine was more efficient than the hybrid (HSSF and FWS) CW of Brezina and Kef el Doukhan WSP. Overall, the removal efficiency of TSS, COD, BOD5, P-PO43−, N-NO2 and N-NO3 were higher in Temacine CW. However, relatively low effectiveness for electrical conductivity (EC) removal was observed; EC increased by almost 39% essentially due to the long dry season, high rate of evaporation and naturally high levels of dissolved salts in water. Despite an encouraging efficiency in removing organic contamination (COD, BOD5), TSS, EC, and reducing the total amount of nitrogen and phosphate in the effluents, the values of the physicochemical parameters at the outlet of Brezina CW and Kef el Doukhan WSP exceeded Algerian standards for reuse in irrigation and environmental discharges. To improve their removal efficiency, it is reasonable to provide a tertiary treatment using maturation ponds in Kef el Doukhan WSP and review the design of Brezina CW.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schilling J, Hertig E, Tramblay Y, Scheffran J (2020) Climate change vulnerability, water resources and social implications in North Africa. Reg Environ Chang 20(1):15. https://doi.org/10.1007/s10113-020-01597-7

    Article  Google Scholar 

  2. Bouchekima B, Bechki D, Bouguettaia H, Boughali S, Meftah MT (2008) The underground brackish waters in South Algeria: potential and viable resources. Paper presented at the 13th IWRA World Water Congress, Montpellier, France 1–4 September 2008

    Google Scholar 

  3. Touitou M, Laib Y, Boudeghdegh A (2020) Management of water resources sector to face climatic shocks in Algieria: a dynamic CGE model analysis. Environ Socio-econ Stud 8(1):48–55. https://doi.org/10.2478/environ-2020-0006

    Article  Google Scholar 

  4. Mozas M, Ghosn A (2013) État des lieux du secteur de l’eau en Algérie. Institut de Perspective Économique du Monde Méditerranéen (IPMED):27

    Google Scholar 

  5. Karef S, Boughalem M, Aitnouh F, Batana F, Boujelben N, Achak M, Oualkacha L, Kettab A (2018) Évaluation de la qualité des sous-produits de l'épuration pour usage en agriculture dans une région semi aride en Algérie. Proc JIC2017 J Maurit Chem Soc 1:12–20

    Google Scholar 

  6. Kettab A (2001) Les ressources en eau en Algérie: stratégies, enjeux et vision. Desalination 136(1–3):25–33

    CAS  Google Scholar 

  7. Office Nationale des Statistique (2019) Demographie algerienne 2019 Office Nationale des Statistique, N°890/Bis, Algerie, p1

    Google Scholar 

  8. Sadi A (2004) Seawater desalination share among water and market policy changes in Algeria. Desalination 165:99–104

    CAS  Google Scholar 

  9. Attoui B, Toumi N, Messaoudi S, Benrabah S (2016) Degradation of water quality: the case of plain west of Annaba (Northeast Algeria). J Water Land Dev 31(1):3–10

    CAS  Google Scholar 

  10. Hamlat A, Guidoum A (2018) Assessment of groundwater quality in a semiarid region of northwestern Algeria using water quality index (WQI). Appl Water Sci 8(8):220. https://doi.org/10.1007/s13201-018-0863-y

    Article  CAS  Google Scholar 

  11. Mohammed T, Al-Amin AQ (2018) Climate change and water resources in Algeria: vulnerability, impact and adaptation strategy. Econ Environ Studi 18 (1):411-429:10.25167/ees.2018.45.23

    Google Scholar 

  12. Hamiche AM, Stambouli AB, Flazi S, Tayeb A (2020) Desalination in Algeria: photovoltaic power plant for TMM (Tahlyat Myah Magtaa) of Oran as a case study. In: Negm AM, Bouderbala A, Chenchouni H, Barceló D (eds) Water resources in Algeria - part II: water quality, treatment, Protection and Development. Springer, Cham, pp 285–315. https://doi.org/10.1007/698_2020_538

    Chapter  Google Scholar 

  13. Almuktar SA, Abed SN, Scholz M (2018) Wetlands for wastewater treatment and subsequent recycling of treated effluent: a review. Environ Sci Pollut Res 25(24):23595–23623. https://doi.org/10.1007/s11356-018-2629-3

    Article  CAS  Google Scholar 

  14. Langergraber G, Regelsberger M, Eregno FE, Heistad A (2020) Design approach for treatment wetlands. In: Langergraber G, Dotro G, Nivala J, Rizzo A, Stein OR (eds) Wetland technology: practical information on the design and application of treatment wetlands. IWA Publishing, p 0. doi:https://doi.org/10.2166/9781789060171_0011

  15. Stefanakis AI (2020) Constructed wetlands for sustainable wastewater treatment in hot and arid climates: opportunities, challenges and case studies in the Middle East. Water 12(6):1665. https://doi.org/10.3390/w12061665

    Article  CAS  Google Scholar 

  16. Benslimane M, Larbi H, Khaldi A (2016) Expérimentation d’un système de recyclage d’eaux usées urbaines phyto-epurees en milieu aride: étude de cas de Brezina (sud ouest algérien). Paper presented at the Deuxième Forum international: Évaluation, économie et protection des ressources en eau, 21 et 22 décembre 2016, Ouargla, Algerie

    Google Scholar 

  17. Monteverdi MC, DaCanal S, Del Lungo A, Masi S, Larbi H, De Angelis P (2014) Re-use of wastewater for a sustainable forest production and climate change mitigation under arid environments. Ann Silvic Res 38(1):22–31

    Google Scholar 

  18. Mandi L (1996) The use of aquatic macrophytes in the treatment of wastewater under arid climate: Marrakech experiment. In: Proceedings of the 5th International Conference on Wetland Systems for Water Pollution Control, Wien

    Google Scholar 

  19. Masi F, El Hamouri B, Abdel Shafi H, Baban A, Ghrabi A, Regelsberger M (2010) Treatment of segregated black/grey domestic wastewater using constructed wetlands in the Mediterranean basin: the zer0-m experience. Water Sci Technol 61(1):97–105. https://doi.org/10.2166/wst.2010.780

    Article  CAS  Google Scholar 

  20. Elfanssi S, Ouazzani N, Latrach L, Hejjaj A, Mandi L (2018) Phytoremediation of domestic wastewater using a hybrid constructed wetland in mountainous rural area. Int J Phytoremediation 20(1):75–87. https://doi.org/10.1080/15226514.2017.1337067

    Article  CAS  Google Scholar 

  21. Ghrabi A, Bousselmi L, Masi F, Regelsberger M (2011) Constructed wetland as a low cost and sustainable solution for wastewater treatment adapted to rural settlements: the Chorfech wastewater treatment pilot plant. Water Sci Technol 63(12):3006–3012. https://doi.org/10.2166/wst.2011.563

    Article  Google Scholar 

  22. Abdel-Shafy HI, El-Khateeb MA, Regelsberger M, El-Sheikh R, Shehata M (2009) Integrated system for the treatment of Blackwater and greywater via UASB and constructed wetland in Egypt. Desalin Water Treat 8(1–3):272–278. https://doi.org/10.5004/dwt.2009.788

    Article  CAS  Google Scholar 

  23. Gaballah MS, Ismail K, Aboagye D, Ismail MM, Sobhi M, Stefanakis AI (2021) Effect of design and operational parameters on nutrients and heavy metals removal in pilot floating treatment wetlands with Eichhornia Crassipes treating polluted lake water. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-12442-7

  24. Masi F (2013) Design considerations for constructed wetlands in dry and hot countries. Sustain Sanitation Pract 14:55–61

    Google Scholar 

  25. Nivala J, Abdallat G, Aubron T, Al-Zreiqat I, Abbassi B, Wu G-M, van Afferden M, Müller RA (2019) Vertical flow constructed wetlands for decentralized wastewater treatment in Jordan: optimization of total nitrogen removal. Sci Total Environ 671:495–504. https://doi.org/10.1016/j.scitotenv.2019.03.376

    Article  CAS  Google Scholar 

  26. Gholipour A, Zahabi H, Stefanakis AI (2020) A novel pilot and full-scale constructed wetland study for glass industry wastewater treatment. Chemosphere 247:125966

    CAS  Google Scholar 

  27. Mozaffari MH, Shafiepour E, Mirbagheri SA, Rakhshandehroo G, Wallace S, Stefanakis AI (2021) Hydraulic characterization and removal of metals and nutrients in an aerated horizontal subsurface flow “racetrack” wetland treating oil industry effluent. Water Res 200:117220

    CAS  Google Scholar 

  28. Gholipour A, Stefanakis AI (2021) A full-scale anaerobic baffled reactor and hybrid constructed wetland for university dormitory wastewater treatment and reuse in an arid and warm climate. Ecol Eng 170:106360. S0925857421002159 106360. https://doi.org/10.1016/j.ecoleng.2021.106360

  29. Stefanakis AI, Prigent S, Breuer R (2018) Integrated produced water management in a desert oilfield using wetland technology and innovative reuse practices. In: Stefanakis AI (ed) Constructed wetlands for industrial wastewater treatment. Wiley, Chichester, pp 25–42

    Google Scholar 

  30. Adhikari AR, Acharya K, Shanahan SA, Zhou X (2011) Removal of nutrients and metals by constructed and naturally created wetlands in the Las Vegas Valley. Nevada Environ Monitoring Assessment 180(1):97–113. https://doi.org/10.1007/s10661-010-1775-y

    Article  CAS  Google Scholar 

  31. Greenway M (2005) The role of constructed wetlands in secondary effluent treatment and water reuse in subtropical and arid Australia. Ecol Eng 25(5):501–509. https://doi.org/10.1016/j.ecoleng.2005.07.008

    Article  Google Scholar 

  32. Driche M, Abdessemed D, Nezzal G (2008) Treatment of wastewater by natural lagoon for its reuse in irrigation. Am j eng appl sci 1:408–413

    Google Scholar 

  33. National sanitation office (ONA) (2014) Sanitation of Ghardaia technical report. Ghardaia. Algeria :7

    Google Scholar 

  34. Tahar I, Sani LM, Abdelhak I, Martin S (2011) The experience of treatment of urban wastewater by lagoon in sahelian climate (Niamey – Niger) and some recent data on the implementation of this technique of treatment under climate saharan (Ouargla bowl, septentrional east algerian sahara). Algerian J Arid Environ AJAE 1, 8(2)

    Google Scholar 

  35. Yagoubi M, Echihabi L, Foutlane A, Bourchich L, Jellal J, Wittland C, El Yachioui M (2000) The performance of the waste stabilisation pond system at Boujaad. Morocco Water Sci Technol 42(10–11):9–16. https://doi.org/10.2166/wst.2000.0597

    Article  CAS  Google Scholar 

  36. Achag B, Mouhanni H, Bendou A (2021) Hydro-biological characterization and efficiency of natural waste stabilization ponds in a desert climate (city of Assa, Southern Morocco). J Water Supply Res Technol AQUA 70(3):361–374

    Google Scholar 

  37. Isayed AA, Zimmo OR Effect of depth on the performance of algae-based wastewater treatment ponds. In: . Efficient management of wastewater, Springer, Berlin Heidelberg, pp 139–147

    Google Scholar 

  38. National Organization for Potable Water and Sanitary Drainage (NOPWASD) (2007) Environmental assessment report for New Valley governorate El Mounira and Naser El Thowra villages (Kharga oasis), Balat El Gedida and Tanidah Villages (Dakhla Oasis). Egypt

    Google Scholar 

  39. Berland J, Cooper P (2001) Extensive wastewater treatment processes adapted to small and medium sized communities (500 to 5000 population equivalents). Office of Official Publications of the European Union, Luxembourg

    Google Scholar 

  40. Hosetti BB, Frost S (1995) A review of the sustainable value of effluents and sludges from wastewater stabilization ponds. Ecol Eng 5(4):421–431. https://doi.org/10.1016/0925-8574(95)00005-4

    Article  Google Scholar 

  41. Food and Agriculture Organization of the United Nations (FAO) (2012) Letter of agreement FAO: treated waste water for sustainable production of valuable biomass, soil and water quality improvement and combating desertification in Algeria and Tunisia. Intermediate report: Use of treated waste water in forestry and agroforestry systems. 10 p

    Google Scholar 

  42. De Angelis P, Da Canal S, Monteverdi C, Perugini L, Chiani F, Larbi H, Miloudi A, Benslimane M, Souidi Z, Nedjahi A, Khemici M, Makhlouf L, Morsli AS (2011) Nouveaux systèmes de culture pour la production agroforestière en milieu désertique par l'utilisation d’eaux usées urbaines phytoépurées: l'installation pilote - expérimentale de Brézina (Algérie). Paper presented at the Technologies vertes pour le développement durable des oasis en Algérie et la lutte contre le changement climatique . Alger, Algerie, 28.02.2011: 27

    Google Scholar 

  43. Cg L, Fletcher TD, Sun G (2009) Nitrogen removal in constructed wetland systems. Eng Life Sci 9(1):11–22

    Google Scholar 

  44. Official journal of the democratic and people's republic of Algeria (2006) Decree n ° 06–141 of April 19, 2006 regulating discharges of liquid and industrial effluents (Décret n ° 06–141 correspondant au 19 avril 2006 réglementant les rejets d'effluents liquides et industriels), vol 26 of 23-04-2006. General secretariat of the Algerian government,

    Google Scholar 

  45. Official journal of the democratic and people's republic of Algeria (2012) Interministerial decree of January 2012 setting the specifications of the treated wastewater used for irrigation. (Arrêté interministériel: janvier 2012 fixant les spécifications des eaux usées épurées utilisées à des fins d'irrigation.). vol 41 of 15-07-2012. General secretariat of the Algerian government, Algeria

    Google Scholar 

  46. Xinshan S, Qin L, Denghua Y (2010) Nutrient removal by hybrid subsurface flow constructed wetlands for high concentration ammonia nitrogen wastewater. Procedia Environ Sci 2:1461–1468. https://doi.org/10.1016/j.proenv.2010.10.159

    Article  Google Scholar 

  47. Schultze-Nobre L, Wiessner A, Bartsch C, Paschke H, Stefanakis AI, Aylward LA, Kuschk P (2017) Removal of dimethylphenols and ammonium in laboratory-scale horizontal subsurface flow constructed wetlands. Eng Life Sci 17(12):1224–1233. https://doi.org/10.1002/elsc.201600213

    Article  CAS  Google Scholar 

  48. Vymazal J (2007) Removal of nutrients in various types of constructed wetlands. Sci Total Environ 380(1):48–65. https://doi.org/10.1016/j.scitotenv.2006.09.014

    Article  CAS  Google Scholar 

  49. Araújo AL, de Oliveira R, Mara DD, Pearson HW, Silva SA (2000) Sulphur and phosphorus transformations in wastewater storage and treatment reservoirs in Northeast Brazil. Water Sci Technol 42(10–11):203–210. https://doi.org/10.2166/wst.2000.0643

    Article  Google Scholar 

  50. Bachi OE, Halilat MT, Bissati S (2015) Sewage in Algerian Oasis: comparison of the purifying efficiency of two processes (WWTP and WWTAS). Energy Procedia 74:752–759

    CAS  Google Scholar 

  51. Hammadi B, Seyd AH, Bebba A (2019) Performance assessment of nitrogen pollution purification by phytodepuration: case of Temacine pilot station (Algeria). Int J Environ Sci Technol 16(11):6647–6656

    CAS  Google Scholar 

  52. National Office of the Meteorology (ONM) (2019) National Office of the meteorology, Ministry of Public Works and Transport – metrological station of Touggourt, Touggourt, Ouargla, data of the year 2019, Algeria

    Google Scholar 

  53. Hammadi B, Bebba Ahmed A, Hacini Z, Zeghdi S (2013) Gardens planted with macrophytes filters, purification performance in an arid climate. Pilot station of Témacine, Ouargla (Algeria). Int Lett Chem Phys Astron 8(3):259–268

    Google Scholar 

  54. Riahi K, Mammou AB, Thayer BB (2009) Date-palm fibers media filters as a potential technology for tertiary domestic wastewater treatment. J Hazard Mater 161(2–3):608–613

    CAS  Google Scholar 

  55. Hafouda L, Hadad M, Arif Y, Djafri K, Balleche O, Talab B, Debba MS, Nelson M, Cattin F (2008) L’épuration des eaux usées domestiques par les plantes, une alternative à encourager pour une préservation durable de l’environnement en zones arides: cas de la station pilote du vieux Ksar de Témacine, Touggourt. Paper presented at the Colloque International sur l’Aridoculture, Optimisation des droductions dgricoles et développementdurable Biskra, Algerie, 13 et 14 Décembre 2008

    Google Scholar 

  56. Tidjani H (2019) Étude de l’efficacite et la valeur ajoutée d’un système de phytoepuration pilote en algerie: la station pilote vieux ksar Temacine, Master's thesis, Université d'el oued, pp 40 http://dspace.univ-eloued.dz/bitstream/123456789/4177/1/581.01.004.pdf

  57. Cui L, Li W, Zhang Y, Wei J, Lei Y, Zhang M, Pan X, Zhao X, Li K, Ma W (2016) Nitrogen removal in a horizontal subsurface flow constructed wetland estimated using the first-order kinetic model. Water 8(11):514

    Google Scholar 

  58. Zhou Q, Zhu H, Bañuelos G, Yan B, Liang Y, Yu X, Cheng X, Chen L (2017) Effects of vegetation and temperature on nutrient removal and microbiology in horizontal subsurface flow constructed wetlands for treatment of domestic sewage. Water Air Soil Pollut 228(3):95. https://doi.org/10.1007/s11270-017-3280-1

    Article  CAS  Google Scholar 

  59. Wagner TV, Al-Manji F, Xue J, Wetser K, de Wilde V, Parsons JR, Rijnaarts HHM, Langenhoff AAM (2021) Effects of salinity on the treatment of synthetic petroleum-industry wastewater in pilot vertical flow constructed wetlands under simulated hot arid climatic conditions. Environ Sci Pollut Res 28(2):2172–2181. https://doi.org/10.1007/s11356-020-10584-8

    Article  CAS  Google Scholar 

  60. Al-Wahaibi BM, Jafary T, Al-Mamun A, Baawain MS, Aghbashlo M, Tabatabaei M, Stefanakis AI (2021) Operational modifications of a full-scale experimental vertical flow constructed wetland with effluent recirculation to optimize total nitrogen removal. J Clean Prod 296:126558. https://doi.org/10.1016/j.jclepro.2021.126558

    Article  CAS  Google Scholar 

  61. Freedman A, Gross A, Shelef O, Rachmilevitch S, Arnon S (2014) Salt uptake and evapotranspiration under arid conditions in horizontal subsurface flow constructed wetland planted with halophytes. Ecol Eng 70:282–286

    Google Scholar 

  62. Elgallal M, Fletcher L, Evans B (2016) Assessment of potential risks associated with chemicals in wastewater used for irrigation in arid and semiarid zones: a review. Agric Water Manag 177:419–431

    Google Scholar 

  63. Bettahar A, Nezli IE, Kechiched R (2017) Evolution and mineralization of water chemistry in the aquifer systems of the terminal complex of the Wadi Righ Valley. Energy Procedia 119:318–324

    CAS  Google Scholar 

  64. Liang Y, Zhu H, Bañuelos G, Yan B, Shutes B, Cheng X, Chen X (2017) Removal of nutrients in saline wastewater using constructed wetlands: plant species, influent loads and salinity levels as influencing factors. Chemosphere 187:52–61

    Google Scholar 

  65. Khene B, Senoussi A, Smati FA (2012) The oasian agrosystem: characteristics and strategy evolution in the M’zab valley (Algeria). Science et changements planétaires/Sécheresse 23(2):78–85

    Google Scholar 

  66. Zegait R, Remini B (2018) Characterisation of treated wastewater of M’Zab Valley for reuse in irrigation (Southern Algeria). Int J Eng Res Africa 40:78–87

    Google Scholar 

  67. Belkhir CO, Remini B (2016) Cleanup and valuation of waters of the aquifer of M’zab valley (Algeria). J Water Land Dev 29(1):23–29

    Google Scholar 

  68. Benhedid H, Bouhoun MD (2018) Spatial variation of nitrogen pollution of the water table at Oued M’Zab (Northern Algerian Sahara). Paper presented at the Technologies and Materials for Renewable Energy, Environment and Sustainability,

    Google Scholar 

  69. Chabaca N, Kettab A, Nakib M, Karef S, Benziada S, Benmamar S, Boumalek W, Bouanani H, Djillali Y (2017) The lagunage for the purification of waste water in the Sahara: an approach integrated into the environmental conditions. Algerian J Env Sc Technol 3(2):8

    Google Scholar 

  70. Dubost D (2002) Ecologie, Aménagement et développement Agricole des oasis algériennes. Doctoral dissertation. Centre de recherche scientifique et technique sur les régions arides: 423

    Google Scholar 

  71. Benhedid H, Bensemaoune Y, Daddi Bouhoun M, Rezzag A, Geurbouz F (2018) Impact des eaux usées epurées sur la qualité des sol en aval de l’oued M’Zab. Paper presented at the 7 ème Workshop sur l'agriculture saharienne: Potentialités Agrobiologiques des Sols: Problèmes posés et Valorisation (Agro-Bio-Sol 2018). Université kasdi Merbah, ouargla, Algerie 24-May-2018 https://dspace.univ-ouargla.dz/jspui/handle/123456789/16675

  72. Djaani M, Amer ZB (2020) Évaluation de la qualité des eaux usées traitées par le système de lagunage naturel d’el Atteuf et par l’argile naturelle d'el menia. UPB Sci Bull Series B 82(3):12

    Google Scholar 

  73. Mansouri B, Ebrahimpour M, Baramaki R (2011) Seasonal differences in treatment efficiency of a set of stabilization ponds in a semi-arid region. Toxicol Environ Chem 93(10):1918–1924

    CAS  Google Scholar 

  74. Mara D, Pearson H (1998) Design manual for waste stabilization ponds in Mediterranean countries. Lagoon Technology International Leeds.

    Google Scholar 

  75. Abdel-Rahman AM, Mohamed AA, Gad AAM, Hashem M (2013) Effectiveness of waste stabilization ponds in removal of linear alkyl benzene salfonate (las). J Urban Environ Eng 7(1):134–142

    Google Scholar 

  76. Boutelhig A, Melit A, Hanini S (2017) Groundwater sources assessment for sustainable supply through photovoltaic water pumping system, in M’zab valley, Ghardaia. Energy Procedia 141:76–80

    Google Scholar 

  77. Mkude I, Saria J (2014) Assessment of waste stabilization ponds (WSP) efficiency on wastewater treatment for agriculture reuse and other activities a case of Dodoma municipality. Tanzania Ethiopian J Environ Stud Manag 7(3):298–304

    Google Scholar 

  78. Mohammed Ali IA-H, Hayder Talee H (2013) Stabilization pond for wastewater treatment. Eur Sci J 9(14):278–294

    Google Scholar 

  79. Ouazzani N, Bouhoum K, Mandi L, Bouarab L, Habbari K, Rafiq F, Picot B, Bontoux J, Schwartzbrod J (1995) Wastewater treatment by stabilization pond: Marrakesh experiment. Water Sci Technol 31(12):75–80. https://doi.org/10.1016/0273-1223(95)00494-8

    Article  CAS  Google Scholar 

  80. Wang JX (2015) Mapping the global dust storm records: review of dust data sources in supporting modeling/climate study. Curr Poll Rep 1(2):82–94

    Google Scholar 

  81. Machibya M, Mwanuzi F (2006) Effect of low-quality effluent from wastewater stabilization ponds to receiving bodies, case of Kilombero sugar ponds and Ruaha river, Tanzania. Int J Environ Res Public Health 3(2):209–216

    CAS  Google Scholar 

  82. Mahassen MEDG, Waled MES, Azza MAA, Mohammed K (2008) Performance evaluation of a waste stabilization pond in a rural area in Egypt. Am J Environ Sci 4(4)

    Google Scholar 

  83. Farzadkia M, Ehrampoush MH, Sadeghi S, Kermani M, Ghaneian MT, Ghelmani V, Abouee Mehrizi E (2014) Performance evaluation of wastewater stabilization ponds in Yazd-Iran. Environ Health Eng Manag J 1(1):7–12

    Google Scholar 

  84. Marek K, Pawęska K, Bawiec A (2021) Treatment of wastewater with high ammonium nitrogen concentration. J Ecol Eng 22(4):224–231

    Google Scholar 

  85. Babu M (2011) Effect of algal biofilm and operational conditions on nitrogen removal in wastewater stabilization ponds. Unesco-ihe phd thesis (1st ed.). CRC Press/Balkema,

    Google Scholar 

  86. Huang J, Kankanamge NR, Chow C, Welsh DT, Li T, Teasdale PR (2018) Removing ammonium from water and wastewater using cost-effective adsorbents: a review. J Environ Sci 63:174–197

    CAS  Google Scholar 

  87. Körner S, Das SK, Veenstra S, Vermaat JE (2001) The effect of pH variation at the ammonium/ammonia equilibrium in wastewater and its toxicity to Lemna gibba. Aquat Bot 71(1):71–78

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Bouchama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bouchama, K. (2022). Efficiency of Constructed Wetlands and Wastewater Stabilization Ponds for Wastewater Treatment in Northern Algerian Sahara. In: Stefanakis, A. (eds) Constructed Wetlands for Wastewater Treatment in Hot and Arid Climates. Wetlands: Ecology, Conservation and Management, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-031-03600-2_2

Download citation

Publish with us

Policies and ethics