Skip to main content
  • Book
  • © 2019

Symmetry Problems

The Navier–Stokes Problem

Part of the book series: Synthesis Lectures on Mathematics & Statistics (SLMS)

Buy it now

Buying options

eBook USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 37.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

This is a preview of subscription content, log in via an institution to check for access.

Table of contents (6 chapters)

  1. Front Matter

    Pages i-xiv
  2. Introduction

    • Alexander G. Ramm
    Pages 1-4
  3. Symmetry Problems for the Helmholtz Equation

    • Alexander G. Ramm
    Pages 15-27
  4. Other Symmetry Problems

    • Alexander G. Ramm
    Pages 29-37
  5. Solution to the Navier-Stokes Problem

    • Alexander G. Ramm
    Pages 39-57
  6. Inverse Problem of Potential Theory

    • Alexander G. Ramm
    Pages 59-63
  7. Back Matter

    Pages 65-71

About this book

This book gives a necessary and sufficient condition in terms of the scattering amplitude for a scatterer to be spherically symmetric. By a scatterer we mean a potential or an obstacle. It also gives necessary and sufficient conditions for a domain to be a ball if an overdetermined boundary problem for the Helmholtz equation in this domain is solvable. This includes a proof of Schiffer's conjecture, the solution to the Pompeiu problem, and other symmetry problems for partial differential equations. It goes on to study some other symmetry problems related to the potential theory. Among these is the problem of "invisible obstacles." In Chapter 5, it provides a solution to the Navier‒Stokes problem in ℝ³. The author proves that this problem has a unique global solution if the data are smooth and decaying sufficiently fast. A new a priori estimate of the solution to the Navier‒Stokes problem is also included. Finally, it delivers a solution to inverse problem of the potential theory without the standard assumptions about star-shapeness of the homogeneous bodies.

About the author

Alexander G. Ramm, Ph.D., was born in Russia, immigrated to the U.S. in 1979, and is a U.S. citizen. He is Professor of Mathematics with broad interests in analysis, scattering theory, inverse problems, theoretical physics, engineering, signal estimation, tomography, theoretical numerical analysis, and applied mathematics. He is an author of 690 research papers, 16 monographs, and an editor of 3 books. He has lectured in many universities throughout the world, presented approximately 150 invited and plenary talks at various conferences, and has supervised 11 Ph.D. students. He was Fulbright Research Professor in Israel and in Ukraine, distinguished visiting professor in Mexico and Egypt, Mercator professor, invited plenary speaker at the 7th PACOM, won the Khwarizmi international award, and received other honors. Recently he solved inverse scattering problems with non-over-determined data and the many-body wave-scattering problem when the scatterers are small particles of an arbitraryshape; Dr. Ramm used this theory to give a recipe for creating materials with a desired refraction coefficient, gave a solution to the refined Pompeiu problem and proved the refined Schiffers conjecture.

Bibliographic Information

Buy it now

Buying options

eBook USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 37.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access