Skip to main content

NFW: Towards National and Individual Fairness in Face Recognition

  • Conference paper
  • First Online:
Pattern Recognition (ACPR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13188))

Included in the following conference series:

  • 1095 Accesses

Abstract

Face recognition has been a long-standing research field and especially boosted by the development of convolutional neural network (CNN). However, existing CNN based FR methods are known to exhibit bias - subjects in a certain demographic group can be better recognized than other groups. While previous works mostly focus on the fairness among different races, we argue that it is essential and favorable to measure the national as well as individual fairness of existing FR methods. As to achieve this, we contribute a dataset called National Faces in the World (NFW) to measure the fairness of representative state-of-the-art FR methods across different countries and individuals. We make comprehensive comparisons on our proposed NFW dataset and illustrate different degrees of bias of existing FR methods. We hope to facilitate more fair FR research with the proposed NFW. The dataset will be public for the whole research community at https://github.com/God-BlessYou/NFW.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://imdb.com/.

References

  1. Albiero, V., Zhang, K., Bowyer, K.W.: How does gender balance in training data affect face recognition accuracy? In: 2020 IEEE International Joint Conference on Biometrics (IJCB), pp. 1–10. IEEE (2020)

    Google Scholar 

  2. Barocas, S., Hardt, M., Narayanan, A.: Fairness in machine learning. Nips Tutor. 1, 2 (2017)

    Google Scholar 

  3. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Lechevallier, Y., Saporta, G. (eds.) Proceedings of COMPSTAT 2010, pp. 177–186. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-7908-2604-3_16

  4. Buolamwini, J., Gebru, T.: Gender shades: intersectional accuracy disparities in commercial gender classification. In: Conference on Fairness, Accountability and Transparency, pp. 77–91. PMLR (2018)

    Google Scholar 

  5. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4690–4699 (2019)

    Google Scholar 

  6. Gong, S., Liu, X., Jain, A.K.: Jointly de-biasing face recognition and demographic attribute estimation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 330–347. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_20

    Chapter  Google Scholar 

  7. Gong, S., Liu, X., Jain, A.K.: Mitigating face recognition bias via group adaptive classifier. arXiv preprint arXiv:2006.07576 (2020)

  8. Grother, P., Ngan, M., Hanaoka, K.: Face Recognition Vendor Test (FVRT): Part 3, Demographic Effects. National Institute of Standards and Technology (2019)

    Google Scholar 

  9. Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: MS-Celeb-1M: a dataset and benchmark for large-scale face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 87–102. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_6

    Chapter  Google Scholar 

  10. Han, H., Jain, A.K., Wang, F., Shan, S., Chen, X.: Heterogeneous face attribute estimation: a deep multi-task learning approach. IEEE Trans. Pattern Anal. Mach. Intell. 40(11), 2597–2609 (2017)

    Article  Google Scholar 

  11. Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. In: Workshop on Faces in ‘Real-Life’ Images: Detection, Alignment, and Recognition (2008)

    Google Scholar 

  12. Huang, Y., et al.: Curricularface: adaptive curriculum learning loss for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5901–5910 (2020)

    Google Scholar 

  13. Huang, Z., Zhang, J., Shan, H.: When age-invariant face recognition meets face age synthesis: a multi-task learning framework. arXiv preprint arXiv:2103.01520 (2021)

  14. Kemelmacher-Shlizerman, I., Seitz, S.M., Miller, D., Brossard, E.: The megaface benchmark: 1 million faces for recognition at scale. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4873–4882 (2016)

    Google Scholar 

  15. Krishnan, A., Almadan, A., Rattani, A.: Understanding fairness of gender classification algorithms across gender-race groups. arXiv preprint arXiv:2009.11491 (2020)

  16. Li, Y., Sun, Y., Cui, Z., Shan, S., Yang, J.: Learning fair face representation with progressive cross transformer. arXiv preprint arXiv:2108.04983 (2021)

  17. Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: SphereFace: deep hypersphere embedding for face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 212–220 (2017)

    Google Scholar 

  18. Maze, B., et al.: IARPA Janus benchmark-C: face dataset and protocol. In: 2018 International Conference on Biometrics (ICB), pp. 158–165. IEEE (2018)

    Google Scholar 

  19. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on bias and fairness in machine learning. arXiv preprint arXiv:1908.09635 (2019)

  20. Moschoglou, S., Papaioannou, A., Sagonas, C., Deng, J., Kotsia, I., Zafeiriou, S.: AgeDB: the first manually collected, in-the-wild age database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 51–59 (2017)

    Google Scholar 

  21. Ou, F.Z., et al.: SDD-FIQA: unsupervised face image quality assessment with similarity distribution distance. arXiv preprint arXiv:2103.05977 (2021)

  22. Robinson, J.P., Livitz, G., Henon, Y., Qin, C., Fu, Y., Timoner, S.: Face recognition: too bias, or not too bias? In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 0–1 (2020)

    Google Scholar 

  23. Terhörst, P., et al.: A comprehensive study on face recognition biases beyond demographics. arXiv preprint arXiv:2103.01592 (2021)

  24. Voigt, P., von dem Bussche, A.: The EU General Data Protection Regulation (GDPR). Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57959-7

    Book  Google Scholar 

  25. Wang, H., et al.: CosFace: large margin cosine loss for deep face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5265–5274 (2018)

    Google Scholar 

  26. Wang, M., Deng, W.: Mitigating bias in face recognition using skewness-aware reinforcement learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9322–9331 (2020)

    Google Scholar 

  27. Wang, M., Deng, W., Hu, J., Tao, X., Huang, Y.: Racial faces in the wild: reducing racial bias by information maximization adaptation network. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 692–702 (2019)

    Google Scholar 

  28. Whitelam, C., et al.: IARPA Janus benchmark-B face dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 90–98 (2017)

    Google Scholar 

  29. Xu, X., et al.: Consistent instance false positive improves fairness in face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 578–586 (2021)

    Google Scholar 

  30. Zemel, R., Wu, Y., Swersky, K., Pitassi, T., Dwork, C.: Learning fair representations. In: International Conference on Machine Learning, pp. 325–333. PMLR (2013)

    Google Scholar 

  31. Zheng, T., Deng, W.: Cross-pose LFW: a database for studying cross-pose face recognition in unconstrained environments. Technical report, Beijing University of Posts and Telecommunications, 5 (2018)

    Google Scholar 

  32. Zheng, T., Deng, W., Hu, J.: Cross-age LFW: a database for studying cross-age face recognition in unconstrained environments. arXiv preprint arXiv:1708.08197 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, Y., Li, Y., Cui, Z. (2022). NFW: Towards National and Individual Fairness in Face Recognition. In: Wallraven, C., Liu, Q., Nagahara, H. (eds) Pattern Recognition. ACPR 2021. Lecture Notes in Computer Science, vol 13188. Springer, Cham. https://doi.org/10.1007/978-3-031-02375-0_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-02375-0_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-02374-3

  • Online ISBN: 978-3-031-02375-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics