Skip to main content

Suitability of Different Metric Choices for Concept Drift Detection

  • Conference paper
  • First Online:
Advances in Intelligent Data Analysis XX (IDA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13205))

Included in the following conference series:

Abstract

The notion of concept drift refers to the phenomenon that the distribution, which is underlying the observed data, changes over time; as a consequence machine learning models may become inaccurate and need adjustment. Many unsupervised approaches for drift detection rely on measuring the discrepancy between the sample distributions of two time windows. This may be done directly, after some preprocessing (feature extraction, embedding into a latent space, etc.), or with respect to inferred features (mean, variance, conditional probabilities etc.). Most drift detection methods can be distinguished in what metric they use, how this metric is estimated, and how the decision threshold is found. In this paper, we analyze structural properties of the drift induced signals in the context of different metrics. We compare different types of estimators and metrics theoretically and empirically and investigate the relevance of the single metric components. In addition, we propose new choices and demonstrate their suitability in several experiments.

We gratefully acknowledge funding by the BMBF TiM, grant number 05M20PBA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Recall that \([a,b) = (a,b] = \emptyset \) for \(a \ge b\).

References

  1. Bifet, A., Gama, J.: IoT data stream analytics. Ann. des Tèlècommun. 75(9–10) (2020). https://doi.org/10.1007/s12243-020-00811-1

  2. Bifet, A., Gavaldà, R.: Learning from time-changing data with adaptive windowing. In: Proceedings of the Seventh SIAM International Conference on Data Mining, April 26–28, 2007, Minneapolis, Minnesota, USA, pp. 443–448 (2007). https://doi.org/10.1137/1.9781611972771.42

  3. Blackard, J.A., Dean, D.J., Anderson, C.W.: Covertype data set (1998). https://archive.ics.uci.edu/ml/datasets/Covertype

  4. Dasu, T., Krishnan, S., Venkatasubramanian, S., Yi, K.: An information-theoretic approach to detecting changes in multi-dimensional data streams. In: Proceedings of the ACM symposium on the Interface of Statistics, Computing Science, and Applications. Citeseer (2006)

    Google Scholar 

  5. Ditzler, G., Polikar, R.: Hellinger distance based drift detection for nonstationary environments. In: 2011 IEEE Symposium on Computational Intelligence in Dynamic and Uncertain Environments, CIDUE 2011, Paris, France, 13 April 2011, pp. 41–48 (2011). https://doi.org/10.1109/CIDUE.2011.5948491

  6. Ditzler, G., Roveri, M., Alippi, C., Polikar, R.: Learning in nonstationary environments: a survey. IEEE Comput. Intell. Mag. 10(4), 12–25 (2015). https://doi.org/10.1109/MCI.2015.2471196

    Article  Google Scholar 

  7. Elwell, R., Polikar, R.: Incremental learning of concept drift in nonstationary environments. IEEE Trans. Neural Netw. 22(10), 1517–1531 (2011)

    Article  Google Scholar 

  8. Gama, J.A., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. 46(4), 44:1–44:37 (2014). https://doi.org/10.1145/2523813

  9. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 286–295. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28645-5_29

    Chapter  Google Scholar 

  10. Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., Smola, A.: A kernel method for the two-sample-problem. Adv. Neural Inf. Process. Syst. 19, 513–520 (2006)

    Google Scholar 

  11. Harries, M., Wales, N.S.: Splice-2 comparative evaluation: electricity pricing (1999)

    Google Scholar 

  12. Hinder, F., Artelt, A., Hammer, B.: A probability theoretic approach to drifting data in continuous time domains. CoRR abs/1912.01969 (2019). http://arxiv.org/abs/1912.01969

  13. Hinder, F., Artelt, A., Hammer, B.: Towards non-parametric drift detection via dynamic adapting window independence drift detection (DAWIDD). In: International Conference on Machine Learning, pp. 4249–4259. PMLR (2020)

    Google Scholar 

  14. Hinder, F., Vaquet, V., Brinkrolf, J., Hammer, B.: Fast non-parametric conditional density estimation using moment trees. In: IEEE Computational Intelligence Magazine. IEEE (2021)

    Google Scholar 

  15. Liu, A., Song, Y., Zhang, G., Lu, J.: Regional concept drift detection and density synchronized drift adaptation. In: IJCAI (2017). https://doi.org/10.24963/ijcai.2017/317

  16. Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., Zhang, G.: Learning under concept drift: a review. IEEE Trans. Knowl. Data Eng. 31(12), 2346–2363 (2018)

    Google Scholar 

  17. Montiel, J., Read, J., Bifet, A., Abdessalem, T.: Scikit-multiflow: a multi-output streaming framework. J. Mach. Learn. Res. 19(72), 1–5 (2018). http://jmlr.org/papers/v19/18-251.html

  18. Pérez-Cruz, F.: Estimation of information theoretic measures for continuous random variables. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems, vol. 21. Curran Associates, Inc. (2009)

    Google Scholar 

  19. Qahtan, A.A., Alharbi, B., Wang, S., Zhang, X.: A pca-based change detection framework for multidimensional data streams: change detection in multidimensional data streams. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 935–944 (2015). https://doi.org/10.1145/2783258.2783359

  20. Rabanser, S., Günnemann, S., Lipton, Z.: Failing loudly: an empirical study of methods for detecting dataset shift. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc. (2019)

    Google Scholar 

  21. Street, W.N., Kim, Y.: A streaming ensemble algorithm (SEA) for large-scale classification. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 26–29 August 2001, pp. 377–382 (2001)

    Google Scholar 

  22. Tabassum, S., Pereira, F.S.F., Fernandes, S., Gama, J.: Social network analysis: an overview. Wiley interdiscip. Rev. Data Min. Knowl. Discov. 8(5) (2018). https://doi.org/10.1002/widm.1256

  23. Webb, G.I., Lee, L.K., Petitjean, F., Goethals, B.: Understanding concept drift. CoRR abs/1704.00362 (2017). http://arxiv.org/abs/1704.00362

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Hinder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hinder, F., Vaquet, V., Hammer, B. (2022). Suitability of Different Metric Choices for Concept Drift Detection. In: Bouadi, T., Fromont, E., Hüllermeier, E. (eds) Advances in Intelligent Data Analysis XX. IDA 2022. Lecture Notes in Computer Science, vol 13205. Springer, Cham. https://doi.org/10.1007/978-3-031-01333-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-01333-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-01332-4

  • Online ISBN: 978-3-031-01333-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics