Skip to main content

Regenerative Machine Tool Vibrations

  • Chapter
  • First Online:
Controlling Delayed Dynamics

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 604))

  • 376 Accesses

Abstract

Two basic models of machine tool vibrations are presented. First, a simple model of orthogonal turning process is discussed where material is removed from the rotating workpiece by a tool. Vibrations of the tool are copied on the workpiece’s surface and, after one revolution, the tool cuts this wavy surface. This phenomenon is called surface regeneration and the equations governing the vibrations are delay differential equations where the time delay is equal to the rotation period of the workpiece. Then, the mechanical model of milling operation is presented. Here the surface regeneration effect is combined by the parametric forcing of the entering and exiting cutting teeth. The governing equation is hence a time-periodic delay differential equation where the time delay and the principal period are both equal to the tooth passing period. Stability diagrams in the plane of the technological parameters are constructed for both turning and milling operations.

The research reported in this paper and carried out at BME has been supported by the Hungarian National Research, Development and Innovation Office (NKFI-K-132477 and NKFI-KKP-133846), by the NRDI Fund (TKP2020 IES,Grant No. BME-IE-MIFM and TKP2020 NC, Grant No. BME-NC) based on the charter of bolster issued by the NRDI Office under the auspices of the Ministry for Innovation and Technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altintas, Y. (2012). Manufacturing automation: Metal cutting mechanics, machine tool vibrations, and CNC design (2nd ed.). Cambridge University Press.

    Google Scholar 

  • Altintas, Y., & Budak, E. (1995). Analytical prediction of stability lobes in milling. CIRP Annals, 44, 357–362.

    Article  Google Scholar 

  • Altintas, Y., & Weck, M. (2004). Chatter stability of metal cutting and grinding. CIRP Annals-Manufacturing Technology, 3(2), 619–642.

    Article  Google Scholar 

  • Altintas, Y., Stépán, G., Merdol, D., & Dombovari, Z. (2008). Chatter stability of milling in frequency and discrete time domain. CIRP Journal of Manufacturing Science and Technology, 1, 35–44.

    Article  Google Scholar 

  • Bachrathy, D., & Stépán, G. (2013). Improved prediction of stability lobes with extended multi frequency solution. CIRP Annals-Manufacturing Technology, 62(1), 411–414.

    Article  Google Scholar 

  • Bachrathy, D., Stépán, G., & Turi, J. (2011). State dependent regenerative effect in milling processes. The Journal of Computational and Nonlinear Dynamics, 6(4), 041002.

    Google Scholar 

  • Breda, D. (2023). Pseudospectral methods for the stability analysis of delay equations. Part II: The solution operator approach: Methods and applications. In D. Breda (Ed.), Controlling Delayed Dynamics: Advances in Theory, Methods and Applications, CISM Lecture Notes (pp. 95–116). Wien-New York: Springer.

    Google Scholar 

  • Budak, E., & Altintas, Y. (1998). Analytical prediction of chatter stability in milling—Part I: General formulation. The Journal of Dynamic Systems, Measurement, and Control, 120, 22–30.

    Article  Google Scholar 

  • Butcher, E. A., Ma, H., Bueler, E., Averina, V., & Szabo, Z. (2004). Stability of linear time-periodic delay-differential equations via Chebyshev polynomials. International Journal for Numerical Methods in Engineering, 59(7), 895–922.

    Article  MathSciNet  Google Scholar 

  • Dombovari, Z., & Stépán, G. (2012). The effect of helix angle variation on milling stability. The Journal of Manufacturing Science and Engineering,134(5), 051015.

    Google Scholar 

  • Dombovari, Z., Iglesias, A., Zatarain, M., & Insperger, T. (2011). Prediction of multiple dominant chatter frequencies in milling processes. International Journal of Machine Tools and Manufacture, 51, 457–464.

    Article  Google Scholar 

  • Faassen, R. P. H., van de Wouw, N., Nijmeijer, H., & Oosterling, J. A. J. (2007). An improved tool path model including periodic delay for chatter prediction in milling. The Journal of Computational and Nonlinear Dynamics, 2(2), 167–179.

    Google Scholar 

  • Hajdu, D., Insperger, T., & Stépán, G. (2017). Robust stability analysis of machining operations. International Journal of Advanced Manufacturing Technology, 88(1), 45–54.

    Article  Google Scholar 

  • Hajdu, D., Borgioli, F., Insperger, T., Stépán, G., & Michiels, W. (2020). Robust stability of milling operations based on pseudospectral approach. International Journal of Machine Tools and Manufacture, 149, 103516.

    Google Scholar 

  • Hartung, F., Insperger, T., Stépán, G., & Turi, J. (2006). Approximate stability charts for milling processes using semi-discretization. Applied Mathematics and Computation, 174, 51–73.

    Article  MathSciNet  Google Scholar 

  • Insperger, T., & Stépán, G. (2002). Semi-discretization method for delayed systems. International Journal for Numerical Methods in Engineering, 55, 503–518.

    Article  MathSciNet  Google Scholar 

  • Insperger, T., & Stépán, G. (2004). Vibration frequencies in high-speed milling processes or a positive answer to Davies, Pratt, Dutterer and Burns. Journal of Manufacturing Science and Engineering, 126(3), 481–487.

    Article  Google Scholar 

  • Insperger, T., & Stépán, G. (2011). Semi-discretization for time-delay systems. Springer.

    Google Scholar 

  • Insperger, T., Mann, B. P., Stépán, G., & Bayly, P. V. (2003). Stability of up-milling and down-milling, Part 1: Alternative analytical methods. International Journal of Machine Tools and Manufacture, 43(1), 25–34.

    Article  Google Scholar 

  • Insperger, T., Stépán, G., Bayly, P. V., & Mann, B. P. (2003). Multiple chatter frequencies in milling processes. Journal of Sound and Vibration, 262(2), 333–345.

    Article  Google Scholar 

  • Insperger, T., Stépán, G., & Turi, J. (2007). State-dependent delay in regenerative turning processes. Nonlinear Dynamics, 47(1–3), 275–283.

    MATH  Google Scholar 

  • Insperger, T., Stépán, G., & Turi, J. (2008). On the higher-order semi-discretizations for periodic delayed systems. Journal of Sound and Vibration, 313, 334–341.

    Article  Google Scholar 

  • Khasawneh, F. A., & Mann, B. P. (2011). A spectral element approach for the stability of delay systems. International Journal for Numerical Methods in Engineering, 87, 566–592.

    Article  MathSciNet  Google Scholar 

  • Kilic, Z. M., & Altintas, Y. (2016). Generalized mechanics and dynamics of metal cutting operations for unified simulations. International Journal of Machine Tools and Manufacture, 104, 1–13.

    Article  Google Scholar 

  • Lehotzky, D., & Insperger, T. (2016). A pseudospectral tau approximation for time delay systems and its comparison with other weighted-residual-type methods. International Journal for Numerical Methods in Engineering, 108, 588–613.

    Article  MathSciNet  Google Scholar 

  • Lehotzky, D., Insperger, T., & Stépán, G. (2016). Extension of the spectral element method for stability analysis of time-periodic delay-differential equations with multiple and distributed delays. Communications in Nonlinear Science and Numerical Simulation, 35, 177–189.

    Article  MathSciNet  Google Scholar 

  • Lehotzky, D., Insperger, T., Khasawneh, F., & Stépán, G. (2017). Spectral element method for stability analysis of milling processes with discontinuous time-periodicity. International Journal of Advanced Manufacturing Technology, 89(9), 2503–2514.

    Article  Google Scholar 

  • Mann, B. P., Insperger, T., Bayly, P. V., & Stépán, G. (2003). Stability of up-milling and down-milling, part 2: Experimental verification. International Journal of Machine Tools and Manufacture, 43(1), 35–40.

    Article  Google Scholar 

  • Merdol, S. D., & Altintas, Y. (2004). Multi frequency solution of chatter stability for low immersion milling. Journal of Manufacturing Science and Engineering, 126(3), 459–466.

    Article  Google Scholar 

  • Molnar, T. G., Insperger, T., & Stépán, G. (2016). State-dependent distributed-delay model of orthogonal cutting. Nonlinear Dynamics, 84, 1147–1156.

    Article  Google Scholar 

  • Molnar, T. G., Insperger, T., Bachrathy, D., & Stépán, G. (2017). Extension of process damping to milling with low radial immersion. International Journal of Advanced Manufacturing Technology, 89(9), 2545–2556.

    Article  Google Scholar 

  • Munoa, J., Beudaert, X., Dombovari, Z., Altintas, Y., Budak, E., Brecher, C., & Stépán, G. (2016). Chatter suppression techniques in metal cutting. CIRP Annals-Manufacturing Technology, 65(2), 785–808.

    Article  Google Scholar 

  • Sims, N. D. (2016). Fast chatter stability prediction for variable helix milling tools. Proceedings of the Institution of Mechanical Engineers, Part C, 230(1), 133–144.

    Google Scholar 

  • Sims, N. D., Mann, B., & Huyanan, S. (2008). Analytical prediction of chatter stability for variable pitch and variable helix milling tools. Journal of Sound and Vibration, 317(3–5), 664–686.

    Article  Google Scholar 

  • Stépán, G. (1989). Retarded dynamical systems. Longman.

    Google Scholar 

  • Stépán, G., Munoa, J., Insperger, T., Surico, M., Bachrathy, D., & Dombovari, Z. (2014). Cylindrical milling tools: Comparative real case study for process stability. CIRP Annals-Manufacturing Technology, 63(1), 385–388.

    Article  Google Scholar 

  • Szalai, R., & Stépán, G. (2006). Lobes and lenses in the stability chart of interrupted turning. Journal of Computational and Nonlinear Dynamics, 1, 205–211.

    Article  Google Scholar 

  • Taylor, F. W. (1907). On the art of cutting metals. Transactions of the American Society of Mechanical Engineers, 28, 31–350.

    Google Scholar 

  • Tlusty, J., Polacek, A., Danek, C., & Spacek, J. (1962). Selbsterregte Schwingungen an Werkzeugmaschinen. VEB Verlag Technik.

    Google Scholar 

  • Tobias, S. A. (1965). Machine tool vibration. Blackie.

    Google Scholar 

  • Tobias, S. A., & Fishwick, W. (1958). Theory of regenerative machine tool chatter. The Engineer, 199–203, 238–239.

    Google Scholar 

  • Totis, G. (2009). RCPM—A new method for robust chatter prediction in milling. International Journal of Machine Tools and Manufacture, 49, 273–284.

    Article  Google Scholar 

  • Totis, G., Albertelli, P., Sortino, M., & Monno, M. (2014). Efficient evaluation of process stability in milling with spindle speed variation by using the Chebyshev collocation method. Journal of Sound and Vibration, 333, 646–668.

    Article  Google Scholar 

  • Totis, G., Insperger, T., Sortino, M., & Stépán, G. (2019). Symmetry breaking in milling dynamic. International Journal of Machine Tools and Manufacture, 139, 37–59.

    Article  Google Scholar 

  • Wan, M., Wang, Y. T., Zhang, W. H., Yang, Y., & Dang, J. W. (2011). Prediction of chatter stability for multiple-delay milling system under different cutting force models. International Journal of Machine Tools and Manufacture, 51(4), 281–295.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Insperger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 CISM International Centre for Mechanical Sciences

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Insperger, T., Stépán, G. (2023). Regenerative Machine Tool Vibrations. In: Breda, D. (eds) Controlling Delayed Dynamics. CISM International Centre for Mechanical Sciences, vol 604. Springer, Cham. https://doi.org/10.1007/978-3-031-01129-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-01129-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-00981-5

  • Online ISBN: 978-3-031-01129-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics