Skip to main content

Nanobiosensors: Diagnostic Tools for Environmental Contaminants

  • Chapter
  • First Online:
Nano-biotechnology for Waste Water Treatment

Part of the book series: Water Science and Technology Library ((WSTL,volume 111))

  • 372 Accesses

Abstract

Environmental pollution, a growing global concern, adversely affects human health and socio-economic development. Besides the presence of various environmental contaminants like chemical substances, heavy metals, viruses, bacteria, parasitic pathogens and their toxins, emerging environmental contaminants (also called micropollutants) have drawn scientific attention and public concerns. The growing demand for environmental pollution control necessitates the development of rapid analytical tools with greater efficacy and precision for the on-site and real-time monitoring of a broader spectrum of various pollutants without extensive sample preparation. Nanobiosensors thus appear as a powerful alternative to conventional analytical techniques that are associated with the issues such as the requirement of sophisticated and expensive instruments and expert personnel for their operation. Nanobiosensors are the fabrication products of nanoscale hybrid materials, such as complexes consisting of nanoparticles (NPs) and biological molecules which are ideal for the detection of contaminants with ultrahigh sensitivity, selectivity and rapid responses. Thus, the use of nanobiosensors will significantly improve environmental monitoring approaches in the future. This chapter emphasizes on nanobiosensor approaches for environmental pollutants monitoring, challenges and future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Algarra M, Campos BB, Alonso B, Miranda MS, Martínez ÁM, Casado CM, Esteves da Silva JCG (2012) Thiolated DAB dendrimers and CdSe quantum dots nanocomposites for Cd(II) or Pb(II) sensing. Talanta 88:403–407

    Article  CAS  PubMed  Google Scholar 

  • Aluri GS, Motayed A, Davydov AV, Oleshko VP, Bertness KA, Sanford NA, Rao MV (2011) Highly selective GaN-nanowire/TiO2-nanocluster hybrid sensors for detection of benzene and related environment pollutants. Nanotechnology 22(29):295503. https://doi.org/10.1088/0957-4484/22/29/295503

  • Andrea MS, Silva LM, Melo AF (2011) Biosensor for environmental applications. In: Somerset V (ed) Environmental biosensors. IntechOpen, Rijeka, pp 3–16

    Google Scholar 

  • Aragay G, Pino F, Merkoci A (2012) Nanomaterials for sensing and destroying pesticides. Chem Rev 112:5317–5338

    Article  CAS  PubMed  Google Scholar 

  • Bae SW, Tan W, Hong J-I (2012) Fluorescent dye-doped silica nanoparticles: new tools for bioapplications. Chem Commun 48:2270–2282

    Article  CAS  Google Scholar 

  • Bănică F-G (2012a) Nanomaterial applications in optical transduction. Chemical sensors and biosensors. Wiley, Chichester, pp 454–472

    Chapter  Google Scholar 

  • Bănică F-G (2012b) What are chemical sensors? Chemical sensors and biosensors. Wiley, Chichester, pp 1–20

    Chapter  Google Scholar 

  • Bala R, Swami A, Tabujew I, Peneva K, Wangoo N, Sharma RK (2018) Ultra-sensitive detection of malathion using quantum dots-polymer based fluorescence aptasensor. Biosens Bioelectron 104:45–49. https://doi.org/10.1016/j.bios.2017.12.034

    Article  CAS  PubMed  Google Scholar 

  • Bu T, Jia P, Liu J, Liu Y, Sun X, Zhang M, Tian Y, Zhang D, Wang J, Wang L (2019) Diversely positive-charged gold nanoparticles based biosensor: a label-free and sensitive tool for foodborne pathogen detection. Food Chem X:100052. https://doi.org/10.1016/j.fochx.2019.100052

  • Busetti F, Badoer S, Cuomo M, Rubino B, Traverse P (2005) Occurrence and removal of potentially toxic metals and heavy metals in the wastewater treatment plant of fusina (Venice, Italy). Ind Eng Chem Res 44(24):9264–9272

    Article  CAS  Google Scholar 

  • Chao MR, Chang YZ, Chen JL (2013) Hydrophilic ionic liquid-passivated CdTe quantum dots for mercury ion detection. Biosens Bioelectron 42:397–402

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Zuo X, Su S, Tang Z, Wu A, Song S, Zhang D, Fan C (2008) An electrochemical sensor for pesticide assays based on carbon nanotube-enhanced acetycholinesterase activity. Analyst 133(9):1182. https://doi.org/10.1039/b805334k

  • Chen Y, Xianyu Y, Wang Y et al (2015) One-step detection of pathogens and viruses: combining magnetic relaxation switching and magnetic separation. ACS Nano 9(3):3184–3191

    Article  CAS  PubMed  Google Scholar 

  • Duan D, Fan K, Zhang D et al (2015) Nanozyme-strip for rapid local diagnosis of Ebola. Biosens Bioelectron 74:134–141

    Article  CAS  PubMed  Google Scholar 

  • Duan G, Zhang Z, Zhang J, Zhou Y, Yu L, Yuan Q (2007) Evaluation of crude toxin and metabolite produced by Helminthosporium gramineum Rabenh for the control of rice sheath blight in paddy fields. Crop Prot 26(7):1036–1041

    Article  CAS  Google Scholar 

  • Gan TT, Zhang YJ, Zhao NJ, Xiao X, Yin GF, Yu SH, Wang HB, Duan JB, Shi CY, Liu WQ (2012) Hydrothermal synthetic mercaptopropionic acid stabled CdTe quantum dots as fluorescent probes for detection of Ag(+). Spectrochim Acta Part A Mol Biomol Spectrosc 99:62–68

    Article  CAS  Google Scholar 

  • Garcia-Aljaro C, Cella LN, Shirale DJ, Park M, Munoz FJ, Yates MV, Mulchandani A (2010) Carbon nanotubes-based chemiresistive biosensors for detection of microorganisms. Biosens Bioelectron 26:1437–1441

    Article  CAS  PubMed  Google Scholar 

  • Gaster RS, Xu L, Han SJ et al (2011) Quantification of protein interactions and solution transport using high-density GMR sensor arrays. Nat Nanotechnol 6(5):314–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grieshaber D, MacKenzie R, Vörös J, Reimhult E (2008) Electrochemical biosensors—sensor principles and architectures. Sensors 8:1400–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grossman HL, Myers WR, Vreeland VJ et al (2004) Detection of bacteria in suspension by using a superconducting quantum interference device. Proc Natl Acad Sci USA 101(1):129–134

    Article  CAS  PubMed  Google Scholar 

  • Gui R, An X, Su H, Shen W, Chen Z, Wang X (2012) A near-infrared-emitting CdTe/CdS core/shell quantum dots-based OFF–ON fluorescence sensor for highly selective and sensitive detection of Cd2+. Talanta 94:257–262

    Article  CAS  PubMed  Google Scholar 

  • Hall DA, Gaster RS, Makinwa KAA, Wang SX, Murmann B (2013) A 256 pixel magnetoresistive biosensor microarray in 0.18 mm CMOS. IEEE J Solid-State Circuits 48(5):1290–1301

    Google Scholar 

  • Herpoldt KL, Loynachan CN, Stevens MM (2017) 3.29 nanomaterials for biological sensing. Compr Biomater II, 635–656.

    Google Scholar 

  • Hu T, Xu J, Ye Y, Han Y, Li X, Wang Z, Sun D, Zhou Y, Ni Z (2019) Visual detection of mixed organophosphorous pesticide using QD-AChE aerogel based microfluidic arrays sensor. Biosens Bioelectron 136:112–117. https://doi.org/10.1016/j.bios.2019.04.036

    Article  CAS  PubMed  Google Scholar 

  • Huang YF, Wang YF, Yan XP (2010) Amine-functionalized magnetic nanoparticles for 854 rapid capture and removal of bacterial pathogens. Environ Sci Technol 44:7908–7913

    Article  CAS  PubMed  Google Scholar 

  • Issadore D, Chung J, Shao H et al (2012) Ultrasensitive clinical enumeration of rare cells ex vivo using a micro-hall detector. Sci Transl Med 4(141):141ra92

    Google Scholar 

  • Jia X, Li L, Yu J, Gao X, Yang X, Lu Z, Zhang X, Liu H (2018) Facile synthesis of BCNO quantum dots with applications for ion detection, chemosensor and fingerprint identification. Spectrochim Acta Part A Mol Biomol Spectrosc 203:214–221. https://doi.org/10.1016/j.saa.2018.05.099

    Article  CAS  ADS  Google Scholar 

  • Kaittanis C, Naser SA, Perez JM (2006) One-step, nanoparticle-mediated bacterial detection with magnetic relaxation. Nano Lett 7:380–383

    Article  CAS  Google Scholar 

  • Ke J, Li X, Shi Y, Zhao Q, Jiang X (2012) A facile and highly sensitive probe for Hg(II) based on metal-induced aggregation of ZnSe/ZnS quantum dots. Nanoscale 4:4996–5001

    Article  CAS  PubMed  Google Scholar 

  • Kim G, Park SB, Moon JH, Lee S (2013) Detection of pathogenic Salmonella with nanobiosensors. Anal Methods 5(20):5717. https://doi.org/10.1039/c3ay41351a

    Article  CAS  Google Scholar 

  • Kim M, Kim MS, Kweon SH et al (2015) Simple and sensitive point-of-care bioassay system based on hierarchically structured enzyme-mimetic nanoparticles. Adv Healthcare Mater 4(9):1311–1316

    Article  CAS  Google Scholar 

  • Khachatryan G, Khachatryan K (2019) Starch based nanocomposites as sensors for heavy metals—detection of Cu2+ and Pb2+ ions. Int Agrophys 33(1):121–126. https://doi.org/10.31545/intagr/104414

  • Koets M, van der Wijk T, van Eemeren JTWM, van Amerongen A, Prins MWJ (2009) Rapid DNA multi-analyte immunoassay on a magneto-resistance biosensor. Biosensing Bioelectron 24:1893–1898

    Article  CAS  Google Scholar 

  • Koneswaran M, Narayanaswamy R (2009) l-Cysteine-capped ZnS quantum dots based fluorescence sensor for Cu2+ ion. Sens Actuators, B Chem 139:104–109

    Article  CAS  Google Scholar 

  • Kuswandi B, Mascini M (2005) Enzyme inhibition based biosensors for environmental monitoring. Curr Enzym Inhib 1:11–21

    Article  Google Scholar 

  • Kuswandi B, Fikriyah CI, Gani AA (2008) An optical fiber biosensor for chlorpyrifos using a single sol–gel film containing acetylcholinesterase and bromothymol blue. Talanta 74:613–622

    Article  CAS  PubMed  Google Scholar 

  • Kuswandi B, Swandari NW (2007) Simple and sensitive flow injection optical fibre biosensor based on immobilised enzyme for monitoring of pesticides. Sensors Transducers 76:978–986

    Google Scholar 

  • Kuswandi B (2018) Nanobiosensor approaches for pollutant monitoring. Environ Chem Lett 17:975–990. https://doi.org/10.1007/s10311-018-00853-x

    Article  CAS  Google Scholar 

  • Kvenvolden KA, Cooper CK (2003) Natural seepage of crude oil into the marine environment. Geo-Mar Lett 23(3–4):140–146

    Article  CAS  Google Scholar 

  • Lau H, Wu H, Wee E et al (2017) Specific and sensitive isothermal electrochemical biosensor for plant pathogen DNA detection with colloidal gold nanoparticles as probes. Sci Rep 7:38896. https://doi.org/10.1038/srep38896

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Li C, Wei C (2017) DNA-templated silver nanocluster as a label-free fluorescent probe for the highly sensitive and selective detection of mercury ions. Sens Actuators B Chem 242:563–568. https://doi.org/10.1016/j.snb.2016.11.091

    Article  CAS  Google Scholar 

  • Liu J, Lu Y (2003) A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J Am Chem Soc 125:6642–6643

    Google Scholar 

  • Malik P, Katyal V, Malik V, Asatkar A, Inwati G, Mukherjee TK (2013) Nanobiosensors: concepts and variations. ISRN Nanomater 9.

    Google Scholar 

  • Maruthupandi M, Thiruppathi D, Vasimalai N (2020) One minute synthesis of green fluorescent copper nanocluster: the preparation of smartphone aided paper-based kit for on-site monitoring of nanomolar level mercury and sulfide ions in environmental samples. J Hazard Mater 392. Article 122294. https://doi.org/10.1016/j.jhazmat.2020.122294

  • Min C, Shao H, Liong M, Yoon TJ, Weissleder R, Lee H (2012) Mechanism of magnetic relaxation switching sensing. ACS Nano 6(8):6821–6828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagatani N, Takeuchi A, Hossain MA, Yuhi T, Endo T, Kerman K et al (2007) Rapid and sensitive visual detection of residual pesticides in food using acetyl-cholinesterase-based disposable membrane chips. Food Control 18:914–920

    Article  CAS  Google Scholar 

  • Norouzi P, Pirali-Hamedani M, Ganjali MR, Faridbod F (2010) A novel acetylcholinesterase biosensor based on chitosan-gold nanoparticles film for determination of monocrotophos using FFT continuous cyclic voltammetry. Int J Electrochem Sci 5:1434–1446

    CAS  Google Scholar 

  • Oliveira TMBF, Fátima Barroso M, Morais S, de Lima-Neto P, Correia AN, Oliveira MBPP, Delerue-Matos C (2013) Biosensor based on multi-walled carbon nanotubes paste electrode modified with laccase for pirimicarb pesticide quantification. Talanta 106:137–143. https://doi.org/10.1016/j.talanta.2012.12.017

    Article  CAS  PubMed  Google Scholar 

  • Pedrosa VA, Paliwal S, Balasubramanian S, Nepal D, Davis V, Wild J, Ramanculov E, Simonian A (2010) Enhanced stability of enzyme organophosphate hydrolase interfaced on the carbon nanotubes. Colloids Surf B: Biointerfaces 77(1):69–74. https://doi.org/10.1016/j.colsurfb.2010.01.009

  • Perez JM, Simeone FJ, Saeki Y, Josephson L, Weissleder R (2003) Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. J Am Chem Soc 125:10192–10193

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014–1014

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramanathan M, Luckarift HR, Sarsenova A, Wild JR, Ramanculov ER, Olsen EV, Simonian AL (2009) Lysozyme-mediated formation of protein-silica nano-composites for biosensing applications. Colloids Surf B Biointerfaces 73:58–64. https://doi.org/10.1016/j.colsurfb.2009.04.024

    Article  CAS  PubMed  Google Scholar 

  • Reddy LH, Arias JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112:5818–5878

    Article  CAS  PubMed  Google Scholar 

  • Rigo AA, de Cezaro AM, Muenchen DK, Martinazzo J, Brezolin AN, Hoehne L, Steffens J, Steffens C (2019a) Cantilever nanobiosensor based on the enzyme urease for detection of heavy metals. Braz J Chem Eng 36(4):1429–1437. https://doi.org/10.1590/0104-6632.20190364s20190035

  • Rigo AA, de Cezaro AM, Muenchen DK, Martinazzo J, Manzoli A, Steffens J, Steffens C (2019b) Heavy metals detection in river water with cantilever nanobiosensor. J Environ Sci Health B. https://doi.org/10.1080/03601234.2019.1685318

    Article  PubMed  Google Scholar 

  • Rivas GA, Rubianes MD, Rodriguez MC, Ferreyra NF, Luque GL, Pedano ML, Miscoria SA, Parado C (2007) Carbon nanotubes for electrochemical biosensing. Talanta 74(3):291–307. https://doi.org/10.1016/j.talanta.2007.10.013

  • Sadik OA, Aluoch AO, Zhou A (2009) Status of biomolecular recognition using electrochemical techniques. Biosens Bioelectron 24:2749–65. https://doi.org/10.1016/j.bios.2008.10.003

  • Sanvicens N, Pastells C, Pascual N, Marco MP (2009) Nanoparticle-based biosensors for detection of pathogenic bacteria. Trends Anal Chem 28:1243–1252

    Article  CAS  Google Scholar 

  • Shahbazi R, Salouti M, Amini B, Jalilvand A, Naderlou E, Amini A, Shams A (2018) Highly selective and sensitive detection of Staphylococcus aureus with gold nanoparticle-based core-shell nano biosensor. Mol Cell Probes 41:8–13

    Article  CAS  PubMed  Google Scholar 

  • Shams S, Bakhshi B, Tohidi Moghadam T et al (2019) A sensitive gold-nanorods-based nanobiosensor for specific detection of Campylobacter jejuni and Campylobacter coli. J Nanobiotechnol 17:43. https://doi.org/10.1186/s12951-019-0476-0

  • Strömberg M, Gómez Z, de la Torre T, Nilsson M, Svedlindh P, Strømme M (2014) A magnetic nanobead-based bioassay provides sensitive detection of single- and biplex bacterial DNA using a portable AC susceptometer. Biotechnol J 9(1):137–145

    Article  PubMed  CAS  Google Scholar 

  • Sung TW, Lo YL (2012) Highly sensitive and selective sensor based on silica coated CdSe/ZnS nanoparticles for Cu2+ ion detection. Sens Actuators B Chem 165:119–125

    Article  CAS  Google Scholar 

  • Swierczewska M, Lee S, Chen X (2011) The design and application of fluorophore-gold nanoparticle activatable probes. Phys Chem Chem Phys 13:9929–9941. https://doi.org/10.1039/c0cp02967j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vikesland PJ, Wigginton KR (2010) Nanomaterial enabled biosensors for pathogen monitoring—a review. Environ Sci Technol 44:3656–3669

    Article  CAS  PubMed  Google Scholar 

  • Viswanathan S, Radecka H, Radecki J (2009) Electrochemical biosensor for pesticides based on acetylcholinesterase immobilized on polyaniline deposited on vertically assembled carbon nanotubes wrapped with ssDNA. Biosens Bioelectron 24(9):2772–2777. https://doi.org/10.1016/j.bios.2009.01.044

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Kawde A, Mustafa M (2003) Carbon-nanotube-modified glassy carbon electrodes for amplified label-free electrochemical detection of DNA hybridization. Analyst 128:912–916. https://doi.org/10.1039/B303282E

    Article  CAS  PubMed  ADS  Google Scholar 

  • Wang P, Zhao L, Shou H, Wang J, Zheng P, Jia K, Liu X (2016) Dual-emitting fluorescent chemosensor based on resonance energy transfer from poly(arylene ether nitrile) to gold nanoclusters for mercury detection. Sens Actuators B Chem 230:337–344. https://doi.org/10.1016/j.snb.2016.02.041

    Article  CAS  Google Scholar 

  • Wei H, Abtahi SH, Vikesland PJ (2015) LSPR-based colorimetric and SERS sensors for environmental analysis. Environ Sci 2(2):120–135

    CAS  Google Scholar 

  • Wen CY, Hu J, Zhang ZL, Tian ZQ, Ou GP, Liao YL, Li Y, Xie M, Sun ZY, Pang DW (2013) One-step sensitive detection of Salmonella typhimurium by coupling 860 magnetic capture and fluorescence identification with functional nanospheres. Anal Chem 85:1223–1230

    Article  CAS  PubMed  Google Scholar 

  • Xia X, Zhang J, Lu N et al (2015) Pd-Ir core-shell nanocubes: a type of highly efficient and versatile peroxidase mimic. ACS Nano 9(10):9994–10004

    Article  CAS  PubMed  Google Scholar 

  • Yu C, Irudayaraj J (2007) Multiplex biosensor using gold nanorods. Anal Chem 79(2):572–579. https://doi.org/10.1021/ac061730d

    Article  CAS  PubMed  Google Scholar 

  • Yunus IS, Harwin Kurniawan A, Adityawarman D, Indarto A (2012) Nanotechnologies in water and air pollution treatment. Environ Technol Rev 1(1):136–148. https://doi.org/10.1080/21622515.2012.733966

  • Zhang Y, Yang Y, Ma W, Guo J, Lin Y, Wang C (2013) Uniform magnetic core/ shell microspheres functionalized with Ni2+—iminodiacetic acid for one step purification and immobilization of his-tagged enzymes. ACS Appl Mater Interfaces 5:2626–2633

    Article  CAS  PubMed  Google Scholar 

  • Zou B, Chu Y, Xia J (2019) Monocrotophos detection with a bienzyme biosensor based on ionic-liquid-modified carbon nanotubes. Anal Bioanal Chem 411:2905–2914. https://doi.org/10.1007/s00216-019-01743-z

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rama Pal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pal, R., Rashmi, I., Rai, J.P.N. (2022). Nanobiosensors: Diagnostic Tools for Environmental Contaminants. In: Rai, J.P.N., Saraswat, S. (eds) Nano-biotechnology for Waste Water Treatment. Water Science and Technology Library, vol 111. Springer, Cham. https://doi.org/10.1007/978-3-031-00812-2_17

Download citation

Publish with us

Policies and ethics