Skip to main content

The Role of Artificial Intelligence and Machine Learning in Surgery

  • Chapter
  • First Online:
Robotic Urologic Surgery

Abstract

The intersection of artificial intelligence (AI) and medicine has resulted in remarkable accomplishments in the past few years. Surgery is no exception to this trend. Taking advantage of the abundant data from electronic medical records and the operating room, a variety of AI models (e.g., machine learning, computer vision, and natural language processing) have served as powerful tools to facilitate every aspect of surgery—from preoperative patient selection to postoperative outcome prediction; from intraoperative intelligent assistance to semiautonomous surgery; and from objective surgical assessment to real-time surgical feedback. The application of AI is still rapidly expanding. However, certain issues brought by AI still concern people, including data privacy, cyber security, model transparency, study reproducibility, bias and inequality, and accountability and liability. By reviewing recent studies in this field and discussing relevant ethical and legal issues, this chapter offers an overview of the current application of AI in the surgical field, and provides some insights about how to avoid the backlash of this involving technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goldenberg SL, Nir G, Salcudean SE. A new era: artificial intelligence and machine learning in prostate cancer. Nat Rev Urol. 2019;16:391–403. https://doi.org/10.1038/s41585-019-0193-3.

    Article  PubMed  Google Scholar 

  2. Nam JG, Park S, Hwang EJ, Lee JH, Jin K-N, Lim KY, et al. Development and validation of deep learning–based automatic detection algorithm for malignant pulmonary nodules on chest radiographs. Radiology. 2018;290:218–28. https://doi.org/10.1148/radiol.2018180237.

    Article  PubMed  Google Scholar 

  3. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316:2402–10. https://doi.org/10.1001/jama.2016.17216.

    Article  PubMed  Google Scholar 

  4. Komorowski M, Celi LA, Badawi O, Gordon AC, Faisal AA. The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care. Nat Med. 2018;24:1716–20. https://doi.org/10.1038/s41591-018-0213-5.

    Article  CAS  PubMed  Google Scholar 

  5. Avati A, Jung K, Harman S, Downing L, Ng A, Shah NH. Improving palliative care with deep learning. BMC Med Inform Decis Mak. 2018;18:122. https://doi.org/10.1186/s12911-018-0677-8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G, et al. Mastering the game of Go with deep neural networks and tree search. Nature. 2016;529:484–9. https://doi.org/10.1038/nature16961.

    Article  CAS  PubMed  Google Scholar 

  7. Duda RO, Hart PE, Stork DG. Pattern classification. 2nd ed. Wiley; 2000.

    Google Scholar 

  8. Bishop CM. Pattern recognition and machine learning. 1st ed. Springer; 2006.

    Google Scholar 

  9. Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, et al. A guide to deep learning in healthcare. Nat Med. 2019;25:24–9. https://doi.org/10.1038/s41591-018-0316-z.

    Article  CAS  PubMed  Google Scholar 

  10. Kassahun Y, Yu B, Tibebu AT, Stoyanov D, Giannarou S, Metzen JH, et al. Surgical robotics beyond enhanced dexterity instrumentation: a survey of machine learning techniques and their role in intelligent and autonomous surgical actions. Int J CARS. 2016;11:553–68. https://doi.org/10.1007/s11548-015-1305-z.

    Article  Google Scholar 

  11. Chen J, Remulla D, Nguyen JH, Aastha D, Liu Y, Dasgupta P, et al. Current status of artificial intelligence applications in urology and their potential to influence clinical practice. BJU Int. 2019;124:567–77. https://doi.org/10.1111/bju.14852.

    Article  PubMed  Google Scholar 

  12. Levin M, McKechnie T, Kruse CC, Aldrich K, Grantcharov TP, Langerman A. Surgical data recording in the operating room: a systematic review of modalities and metrics. Br J Surg. 2021;108:613–21. https://doi.org/10.1093/bjs/znab016.

    Article  CAS  PubMed  Google Scholar 

  13. Xi IL, Zhao Y, Wang R, Chang M, Purkayastha S, Chang K, et al. Deep learning to distinguish benign from malignant renal lesions based on routine MR imaging. Clin Cancer Res. 2020;26:1944–52. https://doi.org/10.1158/1078-0432.CCR-19-0374.

    Article  PubMed  Google Scholar 

  14. Kunapuli G, Varghese BA, Ganapathy P, Desai B, Cen S, Aron M, et al. A decision-support tool for renal mass classification. J Digit Imaging. 2018;31:929–39. https://doi.org/10.1007/s10278-018-0100-0.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Feng Z, Rong P, Cao P, Zhou Q, Zhu W, Yan Z, et al. Machine learning-based quantitative texture analysis of CT images of small renal masses: differentiation of angiomyolipoma without visible fat from renal cell carcinoma. Eur Radiol. 2018;28:1625–33. https://doi.org/10.1007/s00330-017-5118-z.

    Article  PubMed  Google Scholar 

  16. Miskin N, Qin L, Matalon SA, Tirumani SH, Alessandrino F, Silverman SG, et al. Stratification of cystic renal masses into benign and potentially malignant: applying machine learning to the bosniak classification. Abdom Radiol. 2021;46:311–8. https://doi.org/10.1007/s00261-020-02629-w.

    Article  Google Scholar 

  17. Kocak B, Durmaz ES, Ates E, Kaya OK, Kilickesmez O. Unenhanced CT texture analysis of clear cell renal cell carcinomas: a machine learning-based study for predicting histopathologic nuclear grade. AJR Am J Roentgenol. 2019;212:W1–8. https://doi.org/10.2214/AJR.18.20742.

    Article  Google Scholar 

  18. Lin F, Cui E-M, Lei Y, Luo L-P. CT-based machine learning model to predict the Fuhrman nuclear grade of clear cell renal cell carcinoma. Abdom Radiol (NY). 2019;44:2528–34. https://doi.org/10.1007/s00261-019-01992-7.

    Article  PubMed  Google Scholar 

  19. Gandaglia G, Popa I, Abdollah F, Schiffmann J, Shariat SF, Briganti A, et al. The effect of neoadjuvant chemotherapy on perioperative outcomes in patients who have bladder cancer treated with radical cystectomy: a population-based study. Eur Urol. 2014;66:561–8. https://doi.org/10.1016/j.eururo.2014.01.014.

    Article  CAS  PubMed  Google Scholar 

  20. Klén R, Salminen AP, Mahmoudian M, Syvänen KT, Elo LL, Boström PJ. Prediction of complication related death after radical cystectomy for bladder cancer with machine learning methodology. Scand J Urol. 2019;53:325–31. https://doi.org/10.1080/21681805.2019.1665579.

    Article  CAS  PubMed  Google Scholar 

  21. Auffenberg GB, Ghani KR, Ramani S, Usoro E, Denton B, Rogers C, et al. askMUSIC: leveraging a clinical registry to develop a new machine learning model to inform patients of prostate cancer treatments chosen by similar men. Eur Urol. 2019;75:901–7. https://doi.org/10.1016/j.eururo.2018.09.050.

    Article  PubMed  Google Scholar 

  22. Haifler M, Pence I, Sun Y, Kutikov A, Uzzo RG, Mahadevan-Jansen A, et al. Discrimination of malignant and normal kidney tissue with short wave infrared dispersive Raman spectroscopy. J Biophotonics. 2018;11:e201700188. https://doi.org/10.1002/jbio.201700188.

    Article  PubMed  Google Scholar 

  23. Altieri M, Hashimoto D, Rivera AM, Namazi B, Alseidi A, Okrainec A, et al. Using artificial intelligence to identify surgical anatomy, safe zones of DISSection, and dangerous zones of DISSection during laparoscopic cholecystectomy. J Am Coll Surg. 2020;231:e21–2. https://doi.org/10.1016/j.jamcollsurg.2020.08.054.

    Article  Google Scholar 

  24. Porpiglia F, Checcucci E, Amparore D, Autorino R, Piana A, Bellin A, et al. Augmented-reality robot-assisted radical prostatectomy using hyper-accuracy three-dimensional reconstruction (HA3D™) technology: a radiological and pathological study. BJU Int. 2019;123:834–45. https://doi.org/10.1111/bju.14549.

    Article  PubMed  Google Scholar 

  25. Porpiglia F, Checcucci E, Amparore D, Manfredi M, Massa F, Piazzolla P, et al. Three-dimensional elastic augmented-reality robot-assisted radical prostatectomy using hyperaccuracy three-dimensional reconstruction technology: a step further in the identification of capsular involvement. Eur Urol. 2019;76:505–14. https://doi.org/10.1016/j.eururo.2019.03.037.

    Article  PubMed  Google Scholar 

  26. Porpiglia F, Checcucci E, Amparore D, Piana A, Piramide F, Volpi G, et al. Extracapsular extension on neurovascular bundles during robot-assisted radical prostatectomy precisely localized by 3d automatic augmented-reality rendering. J Urol. 2020;203:e1297. https://doi.org/10.1097/JU.0000000000000980.012.

    Article  Google Scholar 

  27. Ma R, Vanstrum EB, Lee R, Chen J, Hung AJ. Machine learning in the optimization of robotics in the operative field. Curr Opin Urol. 2020;30:808–16. https://doi.org/10.1097/MOU.0000000000000816.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yang G-Z, Cambias J, Cleary K, Daimler E, Drake J, Dupont PE, et al. Medical robotics—regulatory, ethical, and legal considerations for increasing levels of autonomy. Sci Robot. 2017;2:eaam8638. https://doi.org/10.1126/scirobotics.aam8638.

    Article  PubMed  Google Scholar 

  29. Koukourikis P, Rha KH. Robotic surgical systems in urology: What is currently available? Investig Clin Urol. 2021;62:14–22. https://doi.org/10.4111/icu.20200387.

    Article  PubMed  Google Scholar 

  30. Fan S, Dai X, Yang K, Xiong S, Xiong G, Li Z, et al. Robot-assisted pyeloplasty using a new robotic system, the KangDuo-Surgical Robot-01: a prospective, single-centre, single-arm clinical study. BJU Int. 2021;128(2):162–5. https://doi.org/10.1111/bju.15396.

    Article  PubMed  Google Scholar 

  31. deBeche-Adams T, Eubanks WS, de la Fuente SG. Early experience with the Senhance®-laparoscopic/robotic platform in the US. J Robot Surg. 2019;13:357–9. https://doi.org/10.1007/s11701-018-0893-3.

    Article  PubMed  Google Scholar 

  32. Cadeddu JA. Re: early experience with the Senhance®-laparoscopic/robotic platform in the US. J Urol. 2019;202:642–3. https://doi.org/10.1097/01.JU.0000576800.80970.1c.

    Article  PubMed  Google Scholar 

  33. Gilling P, Barber N, Bidair M, Anderson P, Sutton M, Aho T, et al. WATER: a double-blind, randomized, controlled trial of Aquablation® vs transurethral resection of the prostate in benign prostatic hyperplasia. J Urol. 2018;199:1252–61. https://doi.org/10.1016/j.juro.2017.12.065.

    Article  PubMed  Google Scholar 

  34. Desai M, Bidair M, Bhojani N, Trainer A, Arther A, Kramolowsky E, et al. WATER II (80-150 mL) procedural outcomes. BJU Int. 2019;123:106–12. https://doi.org/10.1111/bju.14360.

    Article  PubMed  Google Scholar 

  35. Panesar S, Cagle Y, Chander D, Morey J, Fernandez-Miranda J, Kliot M. Artificial intelligence and the future of surgical robotics. Ann Surg. 2019;270:223–6. https://doi.org/10.1097/SLA.0000000000003262.

    Article  PubMed  Google Scholar 

  36. Wang Z, Zi B, Ding H, You W, Yu L. Hybrid grey prediction model-based autotracking algorithm for the laparoscopic visual window of surgical robot. Mech Mach Theory. 2018;123:107–23. https://doi.org/10.1016/j.mechmachtheory.2018.01.015.

    Article  Google Scholar 

  37. Rivas-Blanco I, López-Casado C, Pérez-del-Pulgar CJ, García-Vacas F, Fraile JC, Muñoz VF. Smart cable-driven camera robotic assistant. IEEE Trans Hum-Mach Syst. 2018;2:183–96. https://doi.org/10.1109/THMS.2017.2767286.

    Article  Google Scholar 

  38. Sun Y, Pan B, Fu Y, Cao F. Development of a novel intelligent laparoscope system for semi-automatic minimally invasive surgery. Int J Med Robot Comput Assist Surg. 2020;16:879. https://doi.org/10.1002/rcs.2049.

    Article  Google Scholar 

  39. Wagner M, Bihlmaier A, Kenngott HG, Mietkowski P, Scheikl PM, Bodenstedt S, et al. A learning robot for cognitive camera control in minimally invasive surgery. Surg Endosc. 2021;35:5365–74. https://doi.org/10.1007/s00464-021-08509-8.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Samiei A, Miller R, Lyne J, Smith A, Stewart S, Gomer H, et al. Molecular chemical imaging endoscope, an innovative imaging modality for enhancing the surgeon’s view during laparoscopic procedures. J Urol. 2019;201:e282–3. https://doi.org/10.1097/01.JU.0000555510.24601.ef.

    Article  Google Scholar 

  41. Shvets A, Rakhlin A, Kalinin AA, Iglovikov V. Automatic instrument segmentation in robot-assisted surgery using deep learning. 2018 17th IEEE international conference on machine learning and applications (ICMLA), 2018:624–8. https://doi.org/10.1109/ICMLA.2018.00100.

  42. Sun Y, Pan B, Fu Y. Lightweight deep neural network for real-time instrument semantic segmentation in robot assisted minimally invasive surgery. IEEE Robot Autom Lett. 2021;6:3870–7. https://doi.org/10.1109/LRA.2021.3066956.

    Article  Google Scholar 

  43. Osa T, Sugita N, Mitsuishi M. Online trajectory planning and force control for automation of surgical tasks. IEEE Trans Autom Sci Eng. 2018;15:675–91. https://doi.org/10.1109/TASE.2017.2676018.

    Article  Google Scholar 

  44. Baek D, Hwang M, Kim H, Kwon D. Path planning for automation of surgery robot based on probabilistic roadmap and reinforcement learning. 2018 15th international conference on ubiquitous robots (UR), 2018:342–7. https://doi.org/10.1109/URAI.2018.8441801.

  45. Thananjeyan B, Garg A, Krishnan S, Chen C, Miller L, Goldberg K. Multilateral surgical pattern cutting in 2D orthotropic gauze with deep reinforcement learning policies for tensioning. 2017 IEEE international conference on robotics and automation (ICRA), 2017:2371–8. https://doi.org/10.1109/ICRA.2017.7989275.

  46. Nguyen TT, Nguyen ND, Bello F, Nahavandi S. A new tensioning method using deep reinforcement learning for surgical pattern cutting 2019:1339–1344. https://doi.org/10.1109/ICIT.2019.8755235.

  47. Shin C, Ferguson PW, Pedram SA, Ma J, Dutson EP, Rosen J. Autonomous tissue manipulation via surgical robot using learning based model predictive control. 2019 International conference on robotics and automation (ICRA) 2019:3875–81. https://doi.org/10.1109/ICRA.2019.8794159.

  48. Pedram SA, Ferguson PW, Shin C, Mehta A, Dutson EP, Alambeigi F, et al. Toward synergic learning for autonomous manipulation of deformable tissues via surgical robots: an approximate Q-learning approach. 2020 8th IEEE RAS/EMBS international conference for biomedical robotics and biomechatronics (BioRob) 2020:878–84. https://doi.org/10.1109/BioRob49111.2020.9224421.

  49. Bandini M, Fossati N, Briganti A. Nomograms in urologic oncology, advantages and disadvantages. Curr Opin Urol. 2019;29:42–51. https://doi.org/10.1097/MOU.0000000000000541.

    Article  PubMed  Google Scholar 

  50. Morlacco A, Modonutti D, Motterle G, Martino F, Dal Moro F, Novara G. Nomograms in urologic oncology: lights and shadows. J Clin Med. 2021;10:980. https://doi.org/10.3390/jcm10050980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bzdok D, Altman N, Krzywinski M. Statistics versus machine learning. Nat Methods. 2018;15:233–4. https://doi.org/10.1038/nmeth.4642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hung AJ, Chen J, Che Z, Nilanon T, Jarc A, Titus M, et al. Utilizing machine learning and automated performance metrics to evaluate robot-assisted radical prostatectomy performance and predict outcomes. J Endourol. 2018;32:438–44. https://doi.org/10.1089/end.2018.0035.

    Article  PubMed  Google Scholar 

  53. Hung AJ, Chen J, Gill IS. Automated performance metrics and machine learning algorithms to measure surgeon performance and anticipate clinical outcomes in robotic surgery. JAMA Surg. 2018;153:770–1. https://doi.org/10.1001/jamasurg.2018.1512.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hung AJ, Chen J, Ghodoussipour S, Oh PJ, Liu Z, Nguyen J, et al. A deep-learning model using automated performance metrics and clinical features to predict urinary continence recovery after robot-assisted radical prostatectomy. BJU Int. 2019;124:487–95. https://doi.org/10.1111/bju.14735.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hung AJ, Ma R, Cen S, Nguyen JH, Lei X, Wagner C. Surgeon automated performance metrics as predictors of early urinary continence recovery after robotic radical prostatectomy – a prospective Bi-institutional study. Eur Urol Open Sci. 2021;27:65–72. https://doi.org/10.1016/j.euros.2021.03.005.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Saum G, Reddy SS, Runzhuo M, Hwang DH, Jessica N, Hung AJ. An objective assessment of performance during robotic partial nephrectomy: validation and correlation of automated performance metrics with intraoperative outcomes. J Urol. 2021;205:1294–302. https://doi.org/10.1097/JU.0000000000001557.

    Article  Google Scholar 

  57. Soguero-Ruiz C, Hindberg K, Rojo-Alvarez JL, Skrovseth SO, Godtliebsen F, Mortensen K, et al. Support vector feature selection for early detection of anastomosis leakage from bag-of-words in electronic health records. IEEE J Biomed Health Inform. 2016;20:1404–15. https://doi.org/10.1109/JBHI.2014.2361688.

    Article  PubMed  Google Scholar 

  58. Hung AJ. Can machine-learning algorithms replace conventional statistics? BJU Int. 2019;123:1–1. https://doi.org/10.1111/bju.14542.

    Article  PubMed  Google Scholar 

  59. Collins JW, Marcus HJ, Ghazi A, Sridhar A, Hashimoto D, Hager G, et al. Ethical implications of AI in robotic surgical training: a Delphi consensus statement. Eur Urol Focus. 2021; https://doi.org/10.1016/j.euf.2021.04.006.

  60. Ma R, Reddy S, Vanstrum EB, Hung AJ. Innovations in urologic surgical training. Curr Urol Rep. 2021;22:26. https://doi.org/10.1007/s11934-021-01043-z.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Prebay ZJ, Peabody JO, Miller DC, Ghani KR. Video review for measuring and improving skill in urological surgery. Nat Rev Urol. 2019;16:261–7. https://doi.org/10.1038/s41585-018-0138-2.

    Article  PubMed  Google Scholar 

  62. Mazer L, Varban O, Montgomery JR, Awad MM, Schulman A. Video is better: why aren’t we using it? A mixed-methods study of the barriers to routine procedural video recording and case review. Surg Endosc. 2021;36(2):1090–7. https://doi.org/10.1007/s00464-021-08375-4.

    Article  PubMed  Google Scholar 

  63. Hashimoto DA. Surgeons and machines can learn from operative video: will the system let them? Ann Surg. 2021;274(1):e96. https://doi.org/10.1097/SLA.0000000000004899.

    Article  PubMed  Google Scholar 

  64. Zia A, Guo L, Zhou L, Essa I, Jarc A. Novel evaluation of surgical activity recognition models using task-based efficiency metrics. Int J Comput Assist Radiol Surg. 2019;14:2155–63. https://doi.org/10.1007/s11548-019-02025-w.

    Article  PubMed  Google Scholar 

  65. Khalid S, Goldenberg M, Grantcharov T, Taati B, Rudzicz F. Evaluation of deep learning models for identifying surgical actions and measuring performance. JAMA Netw Open. 2020;3:–e201664. https://doi.org/10.1001/jamanetworkopen.2020.1664.

  66. Wang Z, Majewicz FA. Deep learning with convolutional neural network for objective skill evaluation in robot-assisted surgery. Int J Comput Assist Radiol Surg. 2018;13:1959–70. https://doi.org/10.1007/s11548-018-1860-1.

    Article  PubMed  Google Scholar 

  67. Luongo F, Hakim R, Nguyen JH, Anandkumar A, Hung AJ. Deep learning-based computer vision to recognize and classify suturing gestures in robot-assisted surgery. Surgery. 2020; https://doi.org/10.1016/j.surg.2020.08.016.

  68. Mascagni P, Alapatt D, Urade T, Vardazaryan A, Mutter D, Marescaux J, et al. A computer vision platform to automatically locate critical events in surgical videos: documenting safety in laparoscopic cholecystectomy. Ann Surg. 2021;274(1):e93–5. https://doi.org/10.1097/SLA.0000000000004736.

    Article  PubMed  Google Scholar 

  69. Chen J, Cheng N, Cacciamani G, Oh P, Lin-Brande M, Remulla D, et al. Objective assessment of robotic surgical technical skill: a systematic review. J Urol. 2019;201:461–9. https://doi.org/10.1016/j.juro.2018.06.078.

    Article  PubMed  Google Scholar 

  70. Ghasemloonia A, Maddahi Y, Zareinia K, Lama S, Dort JC, Sutherland GR. Surgical skill assessment using motion quality and smoothness. J Surg Educ. 2017;74:295–305. https://doi.org/10.1016/j.jsurg.2016.10.006.

    Article  PubMed  Google Scholar 

  71. Fard MJ, Ameri S, Ellis RD, Chinnam RB, Pandya AK, Klein MD. Automated robot-assisted surgical skill evaluation: predictive analytics approach. Int J Med Robot Comput Assist Surg. 2018;14:e1850. https://doi.org/10.1002/rcs.1850.

    Article  Google Scholar 

  72. Chen AB, Liang S, Nguyen JH, Liu Y, Hung AJ. Machine learning analyses of automated performance metrics during granular sub-stitch phases predict surgeon experience. Surgery. 2021;169:1245–9. https://doi.org/10.1016/j.surg.2020.09.020.

    Article  PubMed  Google Scholar 

  73. Baghdadi A, Hussein AA, Ahmed Y, Cavuoto LA, Guru KA. A computer vision technique for automated assessment of surgical performance using surgeons’ console-feed videos. Int J Comput Assist Radiol Surg. 2019;14:697–707. https://doi.org/10.1007/s11548-018-1881-9.

    Article  PubMed  Google Scholar 

  74. Jin A, Yeung S, Jopling J, Krause J, Azagury D, Milstein A, et al. Tool detection and operative skill assessment in surgical videos using region-based convolutional neural networks. 2018 IEEE winter conference on applications of computer vision (WACV), 2018:691–699. https://doi.org/10.1109/WACV.2018.00081.

  75. Richstone L, Schwartz MJ, Seideman C, Cadeddu J, Marshall S, Kavoussi LR. Eye metrics as an objective assessment of surgical skill. Ann Surg. 2010;252:177–82. https://doi.org/10.1097/SLA.0b013e3181e464fb.

    Article  PubMed  Google Scholar 

  76. Koskinen J, Bednarik R, Vrzakova H, Elomaa A-P. Combined gaze metrics as stress-sensitive indicators of microsurgical proficiency. Surg Innov. 2020;27:614–22. https://doi.org/10.1177/1553350620942980.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ismail Fawaz H, Forestier G, Weber J, Idoumghar L, Muller P-A. Accurate and interpretable evaluation of surgical skills from kinematic data using fully convolutional neural networks. Int J CARS. 2019;14:1611–7. https://doi.org/10.1007/s11548-019-02039-4.

    Article  Google Scholar 

  78. Price WN, Cohen IG. Privacy in the age of medical big data. Nat Med. 2019;25:37–43. https://doi.org/10.1038/s41591-018-0272-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Collins JW, Levy J, Stefanidis D, Gallagher A, Coleman M, Cecil T, et al. Utilising the Delphi process to develop a proficiency-based progression train-the-trainer course for robotic surgery training. Eur Urol. 2019;75:775–85. https://doi.org/10.1016/j.eururo.2018.12.044.

    Article  PubMed  Google Scholar 

  80. Collins JW, Ghazi A, Stoyanov D, Hung A, Coleman M, Cecil T, et al. Utilising an accelerated Delphi process to develop guidance and protocols for telepresence applications in remote robotic surgery training. Eur Urol Open Sci. 2020;22:23–33. https://doi.org/10.1016/j.euros.2020.09.005.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Hashimoto DA, Rosman G, Witkowski ER, Stafford C, Navarette-Welton AJ, Rattner DW, et al. Computer vision analysis of intraoperative video: automated recognition of operative steps in laparoscopic sleeve gastrectomy. Ann Surg. 2019;270:414–21. https://doi.org/10.1097/SLA.0000000000003460.

    Article  PubMed  Google Scholar 

  82. He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K. The practical implementation of artificial intelligence technologies in medicine. Nat Med. 2019;25:30–6. https://doi.org/10.1038/s41591-018-0307-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Collins J, Akre O, Challacombe B, Karim O, Wiklund P. Robotic networks: delivering empowerment through integration. BJU Int. 2015;116:167–8. https://doi.org/10.1111/bju.13032.

    Article  PubMed  Google Scholar 

  84. Project MONAI n.d.. https://monai.io/ (accessed July 8, 2021).

  85. Char DS, Shah NH, Magnus D. Implementing machine learning in health care – addressing ethical challenges. N Engl J Med. 2018;378:981–3. https://doi.org/10.1056/NEJMp1714229.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25:44–56. https://doi.org/10.1038/s41591-018-0300-7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ma, R., Collins, J.W., Hung, A.J. (2022). The Role of Artificial Intelligence and Machine Learning in Surgery. In: Wiklund, P., Mottrie, A., Gundeti, M.S., Patel, V. (eds) Robotic Urologic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-031-00363-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-00363-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-00362-2

  • Online ISBN: 978-3-031-00363-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics