Skip to main content

Stability of the Dust-Acoustic Solitons in the Thomas-Fermi Dense Magnetoplasma

  • Conference paper
  • First Online:
Nonlinear Dynamics and Applications

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

Abstract

An investigation is presented theoretically for the multi- dimensional instability of dust-acoustic solitary waves in the dense Thomas-Fermi magnetoplasma. The plasma system contains classical negatively charged dust grains with degenerate electrons and ions particles. Based on the reductive perturbation approach, the Zakharov-Kuznetsov (ZK) equation has been formulated. This nonlinear ZK equation is analyzed for its solitary wave solutions. Only rarefactive solitary waves are obtained, those are influenced by the parameters such as the dust temperature and number density, the electrons, and ions Fermi temperatures, and densities. The waves growth rate of the is computed. The previous parameters’ effects on the instability are also discussed. The present results are beneficial in understanding the propagation and the instability of nonlinear aspects in dense plasma systems like white dwarfs and high-intensity laser-solid matter interaction experiments where the Thomas-Fermi dense magnetoplasma state may occur.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jung, Y.D.: Quantum-mechanical effects on electron-electron scattering in dense high-temperature plasmas. Phys. Plasmas 8(8), 3842–3844 (2001)

    Article  ADS  Google Scholar 

  2. Markowich, P.A., Ringhofer, C.A., Schmeiser, C.: Semiconductor Equations, 1st edn. Springer, New York (1990)

    Book  Google Scholar 

  3. Becker, K., Koutsospyros, K., Yin, S.M., et al.: Environmental and biological applications of microplasmas. Plasma Phys. Control. Fusion 47, B513–B523 (2005)

    Article  Google Scholar 

  4. Killian, T.C.: Physics-cool vibes. Nature (London) 441, 297–298 (2006)

    Article  ADS  Google Scholar 

  5. Malkin, V.M., Fisch, N.J., Wurtele, J.S.: Compression of powerful x-ray pulses to attosecond durations by stimulated Raman backscattering in plasmas. Phys. Rev. E 75, 026404 (2007)

    Article  ADS  Google Scholar 

  6. Manfredi, G.: How to model quantum plasmas. Fields Inst. Commun. 46, 263–287 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Shukla, P.K., Mamun, A.A.: Introduction to Dusty Plasma Physics, 1st edn. Institute of Physics, Bristol (2002)

    Book  Google Scholar 

  8. Fortov, V.E., Ivlev, A.V., Khrapak, S.A., Morfill, G.E.: Complex (dusty) plasmas. Phys. Rep. 421, 1–103 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  9. Atteya, A., El-Borie, M.A., Roston, G.D., El-Helbawy, A.S., Prasad, P.K., Saha, A.: Ion-acoustic stable oscillations, solitary, periodic and shock waves in a quantum magnetize electron-positron-ion plasma. Zeitschrift für Naturforschung A 76(9), 757–768 (2021)

    Article  ADS  Google Scholar 

  10. El-Monier, S.Y., Atteya, A.: Dust-acoustic Gardner solitons in cryogenic plasma with the effect of polarization in the presence of a quantizing magnetic field. Zeitschrift für Naturforschung A 76(2), 121–130 (2021)

    Article  ADS  Google Scholar 

  11. Shukla, P.K., Silin, V.P.: Dust ion-acoustic wave. Phys. Scr. 45(5), 508 (1992)

    Article  ADS  Google Scholar 

  12. Barkan, A., D’Angelo, N., Merlino, R.L.: Experiments on ion-acoustic waves in dusty plasmas. Planet. Space Sci. 44, 239–242 (1996)

    Article  ADS  Google Scholar 

  13. Merlino, R.L., Barkan, A., Thompson, C., D’Angelo, N.: Laboratory studies of waves and instabilities in dusty plasmas. Phys. Plasmas 5, 1607–1614 (1998)

    Article  ADS  Google Scholar 

  14. Rao, N.N., Shukla, P.K., Yu, M.Y.: Dust-acoustic waves in dusty plasmas. Planet. Space Sci. 38, 543–546 (1990)

    Article  ADS  Google Scholar 

  15. Barkan, A., Merlino, R.L., D’Angelo, N.: Laboratory observation of the dust-acoustic wave mode. Phys. Plasmas 2, 3563–3565 (1995); Pieper, J. B.: J. Goree, Phys. Rev. Lett. 77, 3137 (1996)

    Google Scholar 

  16. Prabhakara, H.R., Tanna, V.L.: Trapping of dust and dust acoustic waves in laboratory plasmas. Phys. Plasmas 3, 3176–3181 (1996)

    Article  ADS  Google Scholar 

  17. Banerjee, A., Harbolaa, M.K.: Hydrodynamic approach to time-dependent density functional theory; Response properties of metal clusters. J. Chem. Phys. 113, 5614–4623 (2000)

    Article  ADS  Google Scholar 

  18. Domps, A., Reinhard, P.-G., Suraud, E.: Theoretical estimation of the importance of two-electron collisions for relaxation in metal clusters. Phys. Rev. Lett. 81, 5524–5527 (1998)

    Article  ADS  Google Scholar 

  19. Loffredo, M., Morato, L.: On the creation of quantized vortex lines in rotating He II. Nuovo Cimento Soc. Ital. Fis., B 108, 205–215 (1993)

    Google Scholar 

  20. Feynman, R.: Statistical Mechanics. A Set of Lectures, 1st edn. Benjamin, Reading (1972)

    Google Scholar 

  21. Dubinov, A.E., Dubinova, A.A.: Nonlinear theory of ion-acoustic waves in an ideal plasma with degenerate electrons. Plasma Phys. Rep. 33, 859–870 (2007)

    Article  ADS  Google Scholar 

  22. Abdelsalam, U.M., Moslem, W.M., Shukla, P.K.: Localized electrostatic excitations in a Thomas-Fermi plasma containing degenerate electrons. Phys. Plasmas 15, 052303 (2008)

    Google Scholar 

  23. Abdelsalam, U.M., Moslem, W.M., Shukla, P.K.: Ion-acoustic solitary waves in a dense pair-ion plasma containing degenerate electrons and positrons. Phys. Lett. A 372, 4057–4061 (2008)

    Google Scholar 

  24. Atteya, A., El-Borie, M.A., Roston, G.D., El-Helbawy, A.S.: Nonlinear dust acoustic waves in an inhomogeneous magnetized quantum dusty plasma. Waves Random Complex Media 1–16 (2021). https://doi.org/10.1080/17455030.2021.1880030

  25. Rahim, Z., Ali, S., Qamar, A.: Dust acoustic solitary and shock excitations in a Thomas-Fermi magnetoplasma. Phys. Plasmas 21(7), 072305 (2014)

    Google Scholar 

  26. Irfan, M., Ali, S., Mirza, A.M.: Dust-acoustic solitary and rogue waves in a Thomas-Fermi degenerate dusty plasma. Astrophys Space Sci. 353(2), 515–523 (2014)

    Google Scholar 

  27. Irfan, M., Ali, S., Ata-ur-Rahman, Mirza, A.M.: Arbitrary amplitude oblique electrostatic solitary waves in a degenerate cold dusty magnetoplasma. IEEE Trans. Plasma Sci. 47(8), 4151–4158 (2019)

    Google Scholar 

  28. Abd-Elzaher, M., Atteya, A.: Obliquely overtaking collisions of electrostatic N-soliton in the Thomas-Fermi dense magnetoplasma. Waves Random Complex Media 1–21 (2021). https://doi.org/10.1080/17455030.2021.1974121

  29. El-Taibany, W.F., Sabry, R.: Dust-acoustic solitary waves and double layers in a magnetized dusty plasma with nonthermal ions and dust charge variation. Phys. Plasmas 12, 082302 (2005)

    Google Scholar 

  30. Shukla, P.K.: Twisted dust acoustic waves in dusty plasmas. Phys. Plasmas 19, 083704 (2012)

    Google Scholar 

  31. Shukla, P.K.: Twisted electrostatic ion-cyclotron waves in dusty plasmas. Phys. Rev. E 87, 015101 (2013)

    Google Scholar 

  32. Mamun, A.A.: Instability of obliquely propagating electrostatic solitary waves in a magnetized nonthermal dusty plasma. Phys. Scr. 58, 505–509 (1998)

    Article  ADS  Google Scholar 

  33. Mamun, A.A., Russell, S.M., Mendoza-Briceno, C.A., Alam, M.N., Datta, T.K., Das, A.K.: Multi-dimensional instability of electrostatic solitary structures in magnetized nonthermal dusty plasmas. Planet. Space Sci. 48, 163–173 (2000)

    Google Scholar 

  34. El-Taibany, W.F., El-Bedwehy, N.A., El-Shamy, E.F.: Three-dimensional stability of dust-ion acoustic solitary waves in a magnetized multicomponent dusty plasma with negative ions. Phys. Plasmas 18, 033703 (2011)

    Google Scholar 

  35. Akhter, T., Hossain, M.M., Mamun, A.A.: Multi-dimensional instability of dust-acoustic solitary waves in a magnetized plasma with opposite polarity dust. Phys. Plasmas 19, 093707 (2012)

    Google Scholar 

  36. El-Labany, S.K., El-Taibany, W.F., Behery, E.E.: Stability of three-dimensional dust acoustic waves in a dusty plasma with two opposite polarity dust species including dust size distribution. Phys. Rev. E 88, 023108 (2013)

    Google Scholar 

  37. Saini, N.S., Chahal, B.S., Bains, A.S., Bedi, C.: Zakharov-Kuznetsov equation in a magnetized plasma with two temperature superthermal electrons. Phys. Plasmas 21, 022114 (2014)

    Google Scholar 

  38. El-Labany, S.K., El-Taibany, W.F., Behery, E.E., Zedan, N.A.: Stability of three-dimensional obliquely propagating dust acoustic waves in dusty plasma including the polarization force effect. Eur. Phys. J. Plus 130, 250 (2015)

    Article  Google Scholar 

  39. El-Taibany, W.F., Zedan, N.A., Atteya, A.: Stability of three-dimensional dust acoustic waves in a strongly coupled dusty plasma including kappa distributed superthermal ions and electrons. Eur. Phys. J. Plus 134, 479 (2019)

    Article  Google Scholar 

  40. Zedan, N.A., Atteya, El-Taibany, W.F., El-Labany, S.K.: Stability of ion-acoustic solitons in a multi-ion degenerate plasma with the effects of trapping and polarization under the influence of quantizing magnetic field. Waves in Random and Complex Media 1–15 (2020). https://doi.org/10.1080/17455030.2020.1798560

  41. Gao, D.-N.: Multi-dimensional instability of dust acoustic waves in magnetized quantum plasmas with positive or negative dust. Brazil. J. Phys. 51, 66–74 (2021)

    Google Scholar 

  42. Allen, M.A., Rowlands, G.: Determination of the growth rate for the linearized Zakharov-Kuznetsov equation. J. Plasma Phys. 50, 413–424 (1993)

    Article  ADS  Google Scholar 

  43. Allen, M.A., Rowlands, G.: Stability of obliquely propagating plane solitons of the Zakharov-Kuznetsov equation. J. Plasma Phys. 53, 63–73 (1995)

    Article  ADS  Google Scholar 

  44. Haider, M.M., Mamun, A.: Ion-acoustic solitary waves and their multi-dimensional instability in a magnetized degenerate plasma. Phys. Plasmas 19, 102105 (2012)

    Google Scholar 

  45. Jehan, N., Salahuddinin, M., Mahmood, S., Mizra, A.M.: Electrostatic solitary ion waves in dense electron-positron-ion magnetoplasma. Phys. Plasmas 16, 042313 (2009)

    Google Scholar 

  46. Chatterjee, P., Saha, T., Muniandy, S.V., ap, S.L., Wong, C.S.: Solitary waves and double layers in dense magnetoplasma. Phys. Plasmas 16, 072110 (2009)

    Google Scholar 

  47. Rahim, Z., Adnan, M., Qamar, A., Saha, A.: Nonplanar dust-acoustic waves and chaotic motions in Thomas Fermi dusty plasmas. Phys. Plasmas 25, 083706 (2018)

    Google Scholar 

  48. Roy, D., Ghosh, N., Sahu1, B.: Nonlinear modulation of quantum electron acoustic waves in a Thomas–Fermi plasma with effects of exchange-correlation. Indian J Phys. 95(11), 2479–2490 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Atteya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Atteya, A. (2022). Stability of the Dust-Acoustic Solitons in the Thomas-Fermi Dense Magnetoplasma. In: Banerjee, S., Saha, A. (eds) Nonlinear Dynamics and Applications. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-99792-2_16

Download citation

Publish with us

Policies and ethics