Skip to main content

Analgesic Effects of Botulinum Neurotoxins: Data from Animal Studies Volunteers

  • Chapter
  • First Online:
Botulinum Toxin Treatment of Pain Disorders
  • 397 Accesses

Abstract

Recent discoveries of the new pain receptors and channels as well as pain modulators and transmitters have improved our knowledge of pain pathophysiology. Animal data on botulinum neurotoxins (BoNTs) indicate that application of this toxin via injection can modify and diminish the function of several mechanisms that generate or maintain pain.

The first part of this chapter describes the pathophysiology of pain in light of the new knowledge recently gained in this area. The second part provides a brief review of the literature on how treatment with BoNTs can improve pain behavior in animals and lower perception of pain in asymptomatic human volunteers; the therapeutic impact of BoNTs on pain receptors, channels, and mediators is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tam MF, Loh YC, Tan CS, Khadijah Adam S, Abdul Manan N, Basir R. General pathways of pain sensation and the major neurotransmitters involved in pain regulation. Int J Mol Sci. 2018;19(8):2164. https://doi.org/10.3390/ijms19082164. PMID: 30042373; PMCID: PMC6121522

    Article  CAS  Google Scholar 

  2. Priestley JV, Michael GJ, Averill S, Liu M, Willmott N. Regulation of nociceptive neurons by nerve growth factor and glial cell line derived neurotrophic factor. Can J Physiol Pharmacol. 2002;80(5):495–505. https://doi.org/10.1139/y02-034. PMID: 12056559

    Article  CAS  PubMed  Google Scholar 

  3. Neumann S, Doubell TP, Leslie T, Woolf CJ. Inflammatory pain hypersensitivity mediated by phenotypic switch in myelinated primary sensory neurons. Nature. 1996;384(6607):360–4. https://doi.org/10.1038/384360a0. PMID: 8934522

    Article  CAS  PubMed  Google Scholar 

  4. Bourne S, Machado AG, Nagel SJ. Basic anatomy and physiology of pain pathways. Neurosurg Clin N Am. 2014;25(4):629–38. https://doi.org/10.1016/j.nec.2014.06.001. Epub 2014 Aug 3. PMID: 25240653

    Article  PubMed  Google Scholar 

  5. Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965;150(3699):971–9. https://doi.org/10.1126/science.150.3699.971. PMID: 5320816

    Article  CAS  PubMed  Google Scholar 

  6. Anderson WS, O’Hara S, Lawson HC, Treede RD, Lenz FA. Plasticity of pain-related neuronal activity in the human thalamus. Prog Brain Res. 2006;157:353–64. https://doi.org/10.1016/S0079-6123(06)57021-9. PMID: 17046675

    Article  CAS  PubMed  Google Scholar 

  7. Lenz FA, Weiss N, Ohara S, Lawson C, Greenspan JD. The role of the thalamus in pain. Suppl Clin Neurophysiol. 2004;57:50–61. https://doi.org/10.1016/s1567-424x(09)70342-3. PMID: 16106605

    Article  PubMed  Google Scholar 

  8. Rosenow JM, Henderson JM. Anatomy and physiology of chronic pain. Neurosurg Clin N Am. 2003;14(3):445–62, vii. https://doi.org/10.1016/s1042-3680(03)00009-3. PMID: 14567145

    Article  PubMed  Google Scholar 

  9. Cui M, Khanijou S, Rubino J, Aoki KR. Subcutaneous administration of botulinum toxin A reduces formalin-induced pain. Pain. 2004;107:125–33.

    Article  CAS  Google Scholar 

  10. Wheeler-Aceto H, Porreca F, Cowan A. The rat paw formalin test: comparison of noxious agents. Pain. 1990;40:229–38.

    Article  CAS  Google Scholar 

  11. Marino MJ, Terashima T, Steinauer JJ, Eddinger KA, Yaksh TL, Xu Q. Botulinum toxin B in the sensory afferent: transmitter release, spinal activation, and pain behavior. Pain. 2014;155:674–84.

    Article  CAS  Google Scholar 

  12. Welch MJ, Purkis JR, Foster KA. Sensitivity of embryonic rat dorsal root ganglia neurons to Clostridium botulinum neurotoxins. Toxicon. 2000;38:245–58.

    Article  CAS  Google Scholar 

  13. Lucioni A, Bales GT, Lotan TL, McGehee DS, Cook SP, Rapp DE. Botulinum toxin type A inhibits sensory neuropeptide release in rat bladder models of acute injury and chronic inflammation. BJU Int. 2008;101:366–70.

    Article  CAS  Google Scholar 

  14. Meng J, Wang J, Lawrence G, Dolly JO. Synaptobrevin I mediates exocytosis of CGRP from sensory neurons and inhibition by botulinum toxins reflects their anti-nociceptive potential. J Cell Sci. 2007;120:2864–74.

    Article  CAS  Google Scholar 

  15. Meng J, Ovsepian SV, Wang J, Pickering M, Sasse A, Aoki KR, Lawrence GW, Dolly JO. Activation of TRPV1 mediates calcitonin gene-related peptide release, which excites trigeminal sensory neurons and is attenuated by a retargeted botulinum toxin with anti-nociceptive potential. J Neurosci. 2009;29:4981–92.

    Article  CAS  Google Scholar 

  16. Matak I, Tékus V, Bölcskei K, Lacković Z, Helyes Z. Involvement of substance P in the antinociceptive effect of botulinum toxin type A: evidence from knockout mice. Neuroscience. 2017;358:137–45. https://doi.org/10.1016/j.neuroscience.2017.06.040. Epub 2017 Jul 1. PMID: 28673722

    Article  CAS  PubMed  Google Scholar 

  17. Tang M, Meng J, Wang J. New engineered-botulinum toxins inhibit the release of pain-related mediators. Int J Mol Sci. 2019;21(1):262. https://doi.org/10.3390/ijms21010262. PMID: 31906003; PMCID: PMC6981458

    Article  CAS  PubMed Central  Google Scholar 

  18. Joussain C, Le Coz O, Pichugin A, Marconi P, Lim F, Sicurella M, Salonia A, Montorsi F, Wandosell F, Foster K, Giuliano F, Epstein AL, Aranda MA. Botulinum neurotoxin light chains expressed by defective herpes simplex virus type-1 vectors cleave SNARE proteins and inhibit CGRP release in rat sensory neurons. Toxins (Basel). 2019;11(2):123. https://doi.org/10.3390/toxins11020123. PMID: 30791373; PMCID: PMC6409900

    Article  CAS  Google Scholar 

  19. Fischer TZ, Waxman SG. Familial pain syndromes from mutations of the NaV1.7 sodium channel. Ann N Y Acad Sci. 2010;1184:196–207.

    Article  CAS  Google Scholar 

  20. Shin MC, Wakita M, Xie DJ, Yamaga T, Iwata S, Torii Y, Harakawa T, Ginnaga A, Kozaki S, Akaike N. Inhibition of membrane Na+ channels by A type botulinum toxin at femtomolar concentrations in central and peripheral neurons. J Pharmacol Sci. 2012;118(1):33–42. https://doi.org/10.1254/jphs.11060fp. Epub 2011 Dec 10. PMID: 22156364

    Article  CAS  PubMed  Google Scholar 

  21. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (October 1997). "The capsaicin receptor: a heat-activated ion channel in the pain pathway". Nature 389: 816–824.

    Google Scholar 

  22. Schaible HG. Peripheral and central mechanisms of pain generation. Handb Exp Pharmacol. 2007;177:3–28.

    Article  CAS  Google Scholar 

  23. Kumamoto E, Fujita T, Jiang CY. TRP channels involved in spontaneous L-glutamate release enhancement in the adult rat spinal substantia gelatinosa. Cell. 2014;3:331–62.

    Article  CAS  Google Scholar 

  24. Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT, Overend P, Harries MH, Latcham J, Clapham C, Atkinson K, et al. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature. 2000;405:183–7.

    Article  CAS  Google Scholar 

  25. Watabiki T, Kiso T, Tsukamoto M, Aoki T, Matsuoka N. Intrathecal administration of AS1928370, a transient receptor potential vanilloid 1 antagonist, attenuates mechanical allodynia in a mouse model of neuropathic pain. Biol Pharm Bull. 2011;34:1105–8.

    Article  CAS  Google Scholar 

  26. Obata K, Katsura H, Mizushima T, Yamanaka H, Kobayashi K, Dai Y, Fukuoka T, Tokunaga A, Tominaga M, Noguchi K. TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J Clin Invest. 2005;115:2393–401.

    Article  CAS  Google Scholar 

  27. Xiao L, Cheng J, Zhuang Y, Qu W, Muir J, Liang H, Zhang D. Botulinum toxin type A reduces hyperalgesia and TRPV1 expression in rats with neuropathic pain. Pain Med. 2013;14(2):276–86. https://doi.org/10.1111/pme.12017. Epub 2013 Jan 10. PMID: 23301515

    Article  PubMed  Google Scholar 

  28. Shimizu T, Shibata M, Toriumi H, Iwashita T, Funakubo M, Sato H, Kuroi T, Ebine T, Koizumi K, Suzuki N. Reduction of TRPV1 expression in the trigeminal system by botulinum neurotoxin type-A. Neurobiol Dis. 2012;48(3):367–78. https://doi.org/10.1016/j.nbd.2012.07.010. Epub 2012 Jul 20. PMID: 22820141

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Y, Su Q, Lian Y, Chen Y. Botulinum toxin type A reduces the expression of transient receptor potential melastatin 3 and transient receptor potential vanilloid type 4 in the trigeminal subnucleus caudalis of a rat model of trigeminal neuralgia. Neuroreport. 2019;30(10):735–40. https://doi.org/10.1097/WNR.0000000000001268. PMID: 31116130

    Article  CAS  PubMed  Google Scholar 

  30. Nugent M, Yusef YR, Meng J, Wang J, Dolly JO. A SNAP-25 cleaving chimera of botulinum neurotoxin /A and /E prevents TNFα-induced elevation of the activities of native TRP channels on early postnatal rat dorsal root ganglion neurons. Neuropharmacology. 2018;138:257–66. https://doi.org/10.1016/j.neuropharm.2018.06.016. Epub 2018 Jun 12. PMID: 29906413

    Article  CAS  PubMed  Google Scholar 

  31. Snider WD, McMahon SB. Tackling pain at the source: new ideas about nociceptors. Neuron. 1998;20:629–32.

    Article  CAS  Google Scholar 

  32. Apostolidis A, Popat R, Yiangou Y, Cockayne D, Ford AP, Davis JB, Dasgupta P, Fowler CJ, Anand P. Decreased sensory receptors P2X3 and TRPV1 in suburothelial nerve fibers following intradetrusor injections of botulinum toxin for human detrusor overactivity. J Urol 2005;174(3):977–982; discussion 982-3. https://doi.org/10.1097/01.ju.0000169481.42259.54. PMID: 16094018.

  33. Xiao L, Cheng J, Dai J, Zhang D. Botulinum toxin decreases hyperalgesia and inhibits P2X3 receptor over-expression in sensory neurons induced by ventral root transection in rats. Pain Med. 2011;12(9):1385–94. https://doi.org/10.1111/j.1526-4637.2011.01182.x. Epub 2011 Aug 2. PMID: 21810163

    Article  PubMed  Google Scholar 

  34. Liu HT, Chen SH, Chancellor MB, Kuo HC. Presence of cleaved synaptosomal-associated protein-25 and decrease of purinergic receptors P2X3 in the bladder urothelium influence efficacy of botulinum toxin treatment for overactive bladder syndrome. PLoS One. 2015;10(8):e0134803. https://doi.org/10.1371/journal.pone.0134803. PMID: 26241848; PMCID: PMC4524624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Donnerer J, Schuligoi R, Stein C, Amann R. Upregulation, release and axonal transport of substance P and calcitonin gene-related peptide in adjuvant inflammation and regulatory function of nerve growth factor. Regul Pept. 1993;46(1–2):150–4. PMID: 7692483

    CAS  PubMed  Google Scholar 

  36. Lane NE, Schnitzer TJ, Birbara CA, Mokhtarani M, Shelton DL, Smith MD, Brown MT. Tanezumab for the treatment of pain from osteoarthritis of the knee. N Engl J Med. 2010;363:1521–31.

    Article  CAS  Google Scholar 

  37. McMahon SB, Bennet DLH, Bevan S. Inflammatory mediators and modulators. In: McMahon SB, Koltzenburg M, editors. Wall and Melzack’s textbook of pain. Edinburgh: Elsevier Churchill Livingstone; 2006. p. 49–72.

    Chapter  Google Scholar 

  38. Aoki KR. Review of a proposed mechanism for the antinociceptive action of botulinum toxin type A. Neurotoxicology. 2005;26:785–93.

    Article  CAS  Google Scholar 

  39. Attal N, de Andrade DC, Adam F, Ranoux D, Teixeira MJ, Galhardoni R, Raicher I, Üçeyler N, Sommer C, Bouhassira D. Safety and efficacy of repeated injections of botulinum toxin A in peripheral neuropathic pain (BOTNEP): a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2016;15(6):555–65. https://doi.org/10.1016/S1474-4422(16)00017-X. Epub 2016 Mar 2. PMID: 26947719

    Article  CAS  PubMed  Google Scholar 

  40. Bach-Rojecky L, Dominis M, Lacković Z. Lack of anti-inflammatory effect of botulinum toxin type A in experimental models of inflammation. Fundam Clin Pharmacol. 2008;22(5):503–9. https://doi.org/10.1111/j.1472-8206.2008.00615.x. Epub 2008 Aug 20. PMID: 18717739

    Article  CAS  PubMed  Google Scholar 

  41. Bittencourt da Silva L, Karshenas A, Bach FW, Rasmussen S, Arendt-Nielsen L, Gazerani P. Blockade of glutamate release by botulinum neurotoxin type A in humans: a dermal microdialysis study. Pain Res Manag. 2014;19(3):126–32. https://doi.org/10.1155/2014/410415. PMID: 24851237; PMCID: PMC4158957

    Article  PubMed  Google Scholar 

  42. Wang L, Wang K, Chu X, Li T, Shen N, Fan C, Niu Z, Zhang X, Hu L. Intra-articular injection of Botulinum toxin A reduces neurogenic inflammation in CFA-induced arthritic rat model. Toxicon. 2017;126:70–8. https://doi.org/10.1016/j.toxicon.2016.11.009. Epub 2016 Nov 9. PMID: 27838288

    Article  CAS  PubMed  Google Scholar 

  43. Yoo KY, Lee HS, Cho YK, Lim YS, Kim YS, Koo JH, Yoon SJ, Lee JH, Jang KH, Song SH. Anti-inflammatory effects of botulinum toxin type A in a complete Freund’s adjuvant-induced arthritic knee joint of hind leg on rat model. Neurotox Res. 2014;26:32–9.

    Article  CAS  Google Scholar 

  44. Chuang YC, Yoshimura N, Huang CC, Wu M, Chiang PH, Chancellor MB. Intravesical botulinum toxin A administration inhibits COX-2 and EP4 expression and suppresses bladder hyperactivity in cyclophosphamide-induced cystitis in rats. Eur Urol. 2009;56(1):159–66. https://doi.org/10.1016/j.eururo.2008.05.007. Epub 2008 May 20. PMID: 18514386

    Article  CAS  PubMed  Google Scholar 

  45. Chuang Y-C, Yoshimura N, Huang C-C, Wu M, Chiang P-H, Chancellor MB. Intraprostatic botulinum toxin a injection inhibits cyclooxygenase-2 expression and suppresses prostatic pain on capsaicin induced prostatitis model in rat. J Urol. 2008;180:742–8.

    Article  CAS  Google Scholar 

  46. Namazi H. Intravesical botulinum toxin A injections plus hydrodistension can reduce nerve growth factor production and control bladder pain in interstitial cystitis: a molecular mechanism. Urology. 2008;72:463–4.

    Article  Google Scholar 

  47. Chuang YC, Yoshimura N, Huang CC, et al. Intraprostatic botulinum toxin a injection inhibits cyclooxygenase-2 expression and suppresses prostatic pain on capsaicin induced prostatitis model in rat. J Urol. 2008;180:742–8.

    Article  CAS  Google Scholar 

  48. Wang X, Tian S, Wang H, Liu P, Zheng H, Wu L, Liu Q, Wu W. Botulinum toxin type A alleviates neuropathic pain and suppresses inflammatory cytokines release from microglia by targeting TLR2/MyD88 and SNAP23. Cell Biosci. 2020;10(1):141. https://doi.org/10.1186/s13578-020-00501-4. PMID: 33298171; PMCID: PMC7724852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shi X, Gao C, Wang L, Chu X, Shi Q, Yang H, Li T. Botulinum toxin type A ameliorates adjuvant-arthritis pain by inhibiting microglial activation-mediated neuroinflammation and intracellular molecular signaling. Toxicon. 2020;178:33–40. https://doi.org/10.1016/j.toxicon.2019.12.153. Epub 2019 Dec 23. PMID: 32250746

    Article  CAS  PubMed  Google Scholar 

  50. Manuel Muñoz-Lora VR, Abdalla HB, Del Bel Cury AA, Clemente-Napimoga JT. Modulatory effect of botulinum toxin type A on the microglial P2X7/CatS/FKN activated-pathway in antigen-induced arthritis of the temporomandibular joint of rats. Toxicon. 2020;187:116–21. https://doi.org/10.1016/j.toxicon.2020.08.027. Epub 2020 Sep 1. PMID: 32882256

    Article  CAS  PubMed  Google Scholar 

  51. Mika J, Rojewska E, Makuch W, Korostynski M, Luvisetto S, Marinelli S, Pavone F, Przewlocka B. The effect of botulinum neurotoxin A on sciatic nerve injury-induced neuroimmunological changes in rat dorsal root ganglia and spinal cord. Neuroscience. 2011;175:358–66. https://doi.org/10.1016/j.neuroscience.2010.11.040. Epub 2010 Nov 25. PMID: 21111791

    Article  CAS  PubMed  Google Scholar 

  52. Vacca V, Marinelli S, Luvisetto S, Pavone F. Botulinum toxin A increases analgesic effects of morphine, counters development of morphine tolerance and modulates glia activation and μ opioid receptor expression in neuropathic mice. Brain Behav Immun. 2013;32:40–50.

    Article  CAS  Google Scholar 

  53. Zychowska M, Rojewska E, Makuch W, Luvisetto S, Pavone F, Marinelli S, Przewlocka B, Mika J. Participation of pro- and anti-nociceptive interleukins in botulinum toxin A-induced analgesia in a rat model of neuropathic pain. Eur J Pharmacol. 2016;791:377–88. https://doi.org/10.1016/j.ejphar.2016.09.019. Epub 2016 Sep 9. PMID: 27619001

    Article  CAS  PubMed  Google Scholar 

  54. Bardoni R, Takatawa T, Tong CK, Choudhury P, Scherre G, MacDermott AB. Pre- and postsynaptic inhibitory control in the spinal cord dorsal horn. Ann N Y Acad Sci. 2013;1279:90–6.

    Article  CAS  Google Scholar 

  55. Drinovac V, Bach-Rojecky L, Lacković Z. Association of antinociceptive action of botulinum toxin type A with GABA-A receptor. J Neural Transm (Vienna). 2014;121(6):665–9. https://doi.org/10.1007/s00702-013-1150-6. Epub 2014 Jan 14. PMID: 24420081

    Article  CAS  Google Scholar 

  56. Drinovac V, Bach-Rojecky L, Matak I, Lacković Z. Involvement of μ-opioid receptors in antinociceptive action of botulinum toxin type A. Neuropharmacology. 2013;70:331–7. https://doi.org/10.1016/j.neuropharm.2013.02.011. Epub 2013 Mar 13. PMID: 23499661

    Article  CAS  PubMed  Google Scholar 

  57. Marinelli S, Luvisetto S, Cobianchi S, Makuch W, Obara I, Mezzaroma E, Caruso M, Straface E, Przewlocka B, Pavone F. Botulinum neurotoxin type A counteracts neuropathic pain and facilitates functional recovery after peripheral nerve injury in animal models. Neuroscience. 2010;171(1):316–28. https://doi.org/10.1016/j.neuroscience.2010.08.067. Epub 2010 Sep 6. PMID: 20826198

    Article  CAS  PubMed  Google Scholar 

  58. Lima W, Salles AG, Faria JCM, Nepomuceno AC, Salomone R, Krunn P, Gemperli R. Contralateral botulinum toxin improved functional recovery after tibial nerve repair in rats. Plast Reconstr Surg. 2018;142(6):1511–9. https://doi.org/10.1097/PRS.0000000000004981. PMID: 30188467

    Article  CAS  PubMed  Google Scholar 

  59. Finocchiaro A, Marinelli S, De Angelis F, Vacca V, Luvisetto S, Pavone F. Botulinum toxin B affects neuropathic pain but not functional recovery after peripheral nerve injury in a mouse model. Toxins (Basel). 2018;10(3):128. https://doi.org/10.3390/toxins10030128. PMID: 29562640; PMCID: PMC5869416

    Article  CAS  PubMed Central  Google Scholar 

  60. Cobianchi S, Jaramillo J, Luvisetto S, Pavone F, Navarro X. Botulinum neurotoxin A promotes functional recovery after peripheral nerve injury by increasing regeneration of myelinated fibers. Neuroscience. 2017;359:82–91. https://doi.org/10.1016/j.neuroscience.2017.07.011. Epub 2017 Jul 14. PMID: 28716587

    Article  CAS  PubMed  Google Scholar 

  61. Franz CK, Puritz A, Jordan LA, Chow J, Ortega JA, Kiskinis E, Heckman CJ. Botulinum toxin conditioning enhances motor axon regeneration in mouse and human preclinical models. Neurorehabil Neural Repair. 2018;32(8):735–45. https://doi.org/10.1177/1545968318790020. Epub 2018 Jul 25. PMID: 30043670; PMCID: PMC7359633

    Article  PubMed  PubMed Central  Google Scholar 

  62. Vacca V, Madaro L, De Angelis F, Proietti D, Cobianchi S, Orsini T, Puri PL, Luvisetto S, Pavone F, Marinelli S. Revealing the therapeutic potential of botulinum neurotoxin type A in counteracting paralysis and neuropathic pain in spinally injured mice. Toxins (Basel). 2020;12(8):491. https://doi.org/10.3390/toxins12080491. PMID: 32751937; PMCID: PMC7472120

    Article  CAS  PubMed Central  Google Scholar 

  63. Luvisetto S. Botulinum toxin and neuronal regeneration after traumatic injury of central and peripheral nervous system. Toxins (Basel). 2020;12(7):434. https://doi.org/10.3390/toxins12070434. PMID: 32630737; PMCID: PMC7404966

    Article  CAS  PubMed Central  Google Scholar 

  64. Rossetto O, Pirazzini M, Fabris F, Montecucco C. Botulinum neurotoxins: mechanism of action. Handb Exp Pharmacol. 2021;263:35–47. https://doi.org/10.1007/164_2020_355. PMID: 32277300

    Article  CAS  PubMed  Google Scholar 

  65. Pirazzini M, Rossetto O, Eleopra R, Montecucco C. Botulinum neurotoxins: biology, pharmacology, and toxicology. Pharmacol Rev. 2017;69(2):200–35. https://doi.org/10.1124/pr.116.012658. PMID: 28356439; PMCID: PMC5394922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Matak I, Bölcskei K, Bach-Rojecky L, Helyes Z. Mechanisms of botulinum toxin type A action on pain. Toxins (Basel). 2019;11(8):459. https://doi.org/10.3390/toxins11080459. PMID: 31387301; PMCID: PMC6723487

    Article  CAS  Google Scholar 

  67. Caleo M, Spinelli M, Colosimo F, Matak I, Rossetto O, Lackovic Z, Restani L. Transynaptic action of botulinum neurotoxin type A at central cholinergic boutons. J Neurosci. 2018;38(48):10329–37. https://doi.org/10.1523/JNEUROSCI.0294-18.2018. Epub 2018 Oct 12. PMID: 30315128; PMCID: PMC6596210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Matak I, Rossetto O, Lacković Z. Botulinum toxin type A selectivity for certain types of pain is associated with capsaicin-sensitive neurons. Pain. 2014;155(8):1516–26. https://doi.org/10.1016/j.pain.2014.04.027. Epub 2014 May 2. PMID: 24793910

    Article  CAS  PubMed  Google Scholar 

  69. Restani L, Antonucci F, Gianfranceschi L, Rossi C, Rossetto O, Caleo M. Evidence for anterograde transport and transcytosis of botulinum neurotoxin A (BoNT/A). J Neurosci. 2011;31(44):15650–9. https://doi.org/10.1523/JNEUROSCI.2618-11.2011. PMID: 22049408; PMCID: PMC6623022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sluka KA, Kalra A, Moore SA. Unilateral intramuscular injections of acidic saline produce a bilateral, long-lasting hyperalgesia. Muscle Nerve. 2001;24(1):37–46. https://doi.org/10.1002/1097-4598(200101)24:1<37::aid-mus4>3.0.co;2-8. PMID: 11150964

    Article  CAS  PubMed  Google Scholar 

  71. Bach-Rojecky L, Lacković Z. Central origin of the antinociceptive action of botulinum toxin type A. Pharmacol Biochem Behav. 2009;94(2):234–8. https://doi.org/10.1016/j.pbb.2009.08.012. Epub 2009 Sep 2. PMID: 19732788

    Article  CAS  PubMed  Google Scholar 

  72. Bach-Rojecky L, Salković-Petrisić M, Lacković Z. Botulinum toxin type A reduces pain supersensitivity in experimental diabetic neuropathy: bilateral effect after unilateral injection. Eur J Pharmacol. 2010;633(1–3):10–4. https://doi.org/10.1016/j.ejphar.2010.01.020. Epub 2010 Feb 1. PMID: 20123097

    Article  CAS  PubMed  Google Scholar 

  73. Favre-Guilmard C, Chabrier PE, Kalinichev M. Bilateral analgesic effects of abobotulinumtoxinA (Dysport® ) following unilateral administration in the rat. Eur J Pain. 2017;21(5):927–37. https://doi.org/10.1002/ejp.995. Epub 2017 Mar 6. PMID: 28263010

    Article  CAS  PubMed  Google Scholar 

  74. Lackovic Z. Botulinum toxin and pain. In: Hallet, Whitcomb, editors. Botulinum toxin. Springer; 2020. p. 256–7.

    Google Scholar 

  75. Filippi GM, Errico P, Santarelli R, Bagolini B, Manni E. Botulinum A toxin effects on rat jaw muscle spindles. Acta Otolaryngol. 1993;113(3):400–4. https://doi.org/10.3109/00016489309135834. PMID: 8390772

    Article  CAS  PubMed  Google Scholar 

  76. Rand MJ, Whaler BC. Impairment of sympathetic transmission by botulinum toxin. Nature. 1965;206(984):588–91. https://doi.org/10.1038/206588a0. PMID: 5319286

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jabbari, B. (2022). Analgesic Effects of Botulinum Neurotoxins: Data from Animal Studies Volunteers. In: Botulinum Toxin Treatment of Pain Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-99650-5_3

Download citation

Publish with us

Policies and ethics