Skip to main content

Transmission Electron Microscopy: A Powerful and Novel Scientific Technique with Nanoscale Resolution for Characterization of Materials

  • Chapter
  • First Online:
Microscopic Techniques for the Non-Expert
  • 847 Accesses

Abstract

The electron microscopy has brought a revolution in the field of nanotechnology. Various electron microscopy techniques with unique possibilities are used to study morphology, topography, structures and different phases present in the materials. Transmission electron microscope (TEM) is a remarkable scientific tool for the imaging of materials at nanoscale. Ruska and Knoll invented the first TEM consisted of only two electromagnetic lenses for which Ruska got the Nobel Prize. As a result of this invention, it was realized that such lenses are capable to get magnified images at nanoscales. Later on in 1970, the best electron microscopes achieved the resolution of 3.5 Å with several technical improvements and optimizations. This achievement could resolve many columns of metal atoms such as oxide structures. The high resolution of sub-Å has been achieved with the use of advanced aberrations-corrected lenses. The modern TEM’s are capable of attaining resolution of 1 Å at around 300 kV or even less than it can be achieved by using high accelerated energy of electrons. The high-resolution transmission electron microscopes (HRTEM) with high energy and spatial resolution provide the deep insight into almost all the atomic structures. The most important feature of TEM is that it works in both real and reciprocal space. This makes it a unique technique for imaging nanostructures. All samples must be prepared before TEM analysis in order to obtain accurate results. The sample should be very thin and have thickness around 100 nm so that the interaction with electrons should be weak. Thus, the high accelerated electron beam cannot damage the sample. The sample preparation technique for biological and non-biological materials is different. TEM has many applications and one can easily find out the structure, particle size, particle size distribution, elemental compositions and particle shape under observation using it. This technique indeed proved a boon for nanostructures analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ruska E (1987) The development of the electron microscope and of electron microscopy. Biosci Rep 7:607. https://doi.org/10.1007/BF01127674

    Article  CAS  PubMed  Google Scholar 

  2. Nagashima K, Zheng J, Parmiter D, Patri AK (2011) Biological tissue and cell culture specimen preparation for TEM nanoparticle characterization. Methods Mol Biol 697:83. https://doi.org/10.1007/978-1-60327-198-1_8

    Article  CAS  PubMed  Google Scholar 

  3. https://www.nih.gov/news-events/nih-research-matters/novel-coronavirus-structure-reveals-targets-vaccines-treatments

  4. Egerton RF (2014) Choice of operating voltage for a transmission electron microscope. Ultramicroscopy 145:85. https://doi.org/10.1016/j.ultramic.2013.10.019

    Article  CAS  PubMed  Google Scholar 

  5. Ul-Hamid A (2018) Introduction. In: A beginners’ guide to scanning electron microscopy. Springer, Cham. https://doi.org/10.1007/978-3-319-98482-7_1

  6. Cosslett VE (1971) High voltage electron microscopy and its application in biology. Philos Trans R Soc Lond B 261:35. https://doi.org/10.1098/rstb.1971.0034

    Article  Google Scholar 

  7. Mitchell DRG (2015) Contamination mitigation strategies for scanning transmission electron microscopy. Micron 73:36. https://doi.org/10.1016/j.micron.2015.03.013

    Article  CAS  PubMed  Google Scholar 

  8. Thompson RF, Walker M, Siebert CA, Muench SP, Ranson NA (2016) An introduction to sample preparation and imaging by cryo-electron microscopy for structural biology. Methods 100:3. https://doi.org/10.1016/j.ymeth.2016.02.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kimoto K (2014) Practical aspects of monochromators developed for transmission electron microscopy. Microscopy 63:337. https://doi.org/10.1093/jmicro/dfu027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Heinemann K, Poppa H (1986) An ultrahigh vacuum multipurpose specimen chamber with sample introduction system for in situ transmission electron microscopy investigations. J Vac Sci Technol A 4:127. https://doi.org/10.1116/1.573484

    Article  CAS  Google Scholar 

  11. Bendersky LA, Gayle FW (2001) Electron diffraction using transmission electron microscopy. J Res Natl Inst Stand Technol 106:997. https://doi.org/10.6028/jres.106.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Champness PE (2001) Electron diffraction in the transmission electron microscope. Garland Science, London. https://doi.org/10.1201/9781003076872

  13. Haider M, Rose H, Uhlemann S, Schwan E, Kabius B, Urban K (1998) Towards 0.1 nm resolution with the first spherically corrected transmission electron microscope. Microsc 47:395. https://doi.org/10.1093/oxfordjournals.jmicro.a023610

    Article  CAS  Google Scholar 

  14. Pennycook SJ, Nellist PD (2011) Scanning transmission electron microscopy. Springer, New York. https://doi.org/10.1007/978-1-4419-7200-2

  15. Brydson R (2011) Aberration-corrected analytical transmission electron microscopy. Wiley, Chichester. https://doi.org/10.1002/9781119978848

    Book  Google Scholar 

  16. Erni R (2015) Aberration-corrected imaging in transmission electron microscopy, 2nd edn. Imperial College Press, London. https://doi.org/10.1142/p703

  17. Kaur N (2021) Effect of magnetic anisotropy and particle size distribution on magnetization of antiferromagnetic nanoparticles, Ph. D. Thesis, Thapar Institute of Engineering and Technology, Patiala

    Google Scholar 

  18. Kaur N, Tiwari SD (2018) Role of particle size distribution and magnetic anisotropy on magnetization of antiferromagnetic nanoparticles. J Phys Chem Solids 123:279. https://doi.org/10.1016/j.jpcs.2018.08.013

    Article  CAS  Google Scholar 

  19. Kaur N, Tiwari SD (2019) Thermal decomposition of ferritin core. Appl Phys A Mater Sci Process 125:805. https://doi.org/10.1007/s00339-019-3104-9

    Article  CAS  Google Scholar 

  20. Falvo E (2016) Improved doxorubicin encapsulation and pharmacokinetics of ferritin-fusion protein nanocarriers bearing PAS elements. Biomacromolecules 17:514. https://doi.org/10.1021/acs.biomac.5b01446

    Article  CAS  PubMed  Google Scholar 

  21. Kaur N, Tiwari SD (2020) Role of wide particle size distribution on magnetization. Appl Phys A Mater Sci Process 126:349. https://doi.org/10.1007/s00339-020-03501-w

    Article  CAS  Google Scholar 

  22. Feng J et al (2014) Antimicrobial activity of silver nanoparticles in situ growth on TEMPO-mediated oxidized bacterial cellulose. Cellulose 21:4557. https://doi.org/10.1007/s10570-014-0449-2

    Article  CAS  Google Scholar 

  23. Vitorino HA et al (2018) Magnetite nanoparticles coated with oleic acid: accumulation in hepatopancreatic cells of the mangrove crab Ucides cordatus. Environ Sci Pollut Res 25:35672. https://doi.org/10.1007/s11356-018-3480-2

    Article  CAS  Google Scholar 

  24. Ding HL et al (2012) Fe3O4@SiO2 core/shell nanoparticles: the silica coating regulations with a single core for different core sizes and Shell thicknesses. Chem Mater 24:4572. https://doi.org/10.1021/cm302828d

    Article  CAS  Google Scholar 

  25. Pérez NP, González BR, Hilgendorff M, Giersig M, Marzán LML (2010) Gold encapsulation of star-shaped FePt nanoparticles. J Mater Chem 20:61. https://doi.org/10.1039/B911175A

    Article  Google Scholar 

  26. Cai X et al (2010) Tailored au nanorods: optimizing functionality, controlling the aspect ratio and increasing biocompatibility. Nanotechnology 21:335604. https://doi.org/10.1088/0957-4484/21/33/335604

    Article  CAS  PubMed  Google Scholar 

  27. Zhang L et al (2010) Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli. J Nanopart Res 12:1625. https://doi.org/10.1007/s11051-009-9711-1

    Article  CAS  Google Scholar 

  28. Klien ND et al (2015) Dark field transmission electron microscopy as a tool for identifying inorganic nanoparticles in biological matrices. Anal Chem 87:4356. https://doi.org/10.1021/acs.analchem.5b00124

    Article  CAS  Google Scholar 

  29. Su Z et al (2010) Crystal growth of Si nanowires and formation of longitudinal planar defects. Cryst Eng Comm 12:2793. https://doi.org/10.1039/B925198G

    Article  CAS  Google Scholar 

  30. Weng CH, Huang CC, Yeh CS, Lei HY, Lee GB (2008) Synthesis of hexagonal gold nanoparticles using a microfluidic reaction system. J Micromech Microeng 18:035019. https://doi.org/10.1088/0960-1317/18/3/035019

    Article  CAS  Google Scholar 

  31. Zhang H, Ha DH, Hovden R, Kourkoutis LF, Robinson RD (2011) Controlled synthesis of uniform cobalt phosphide hyperbranched nanocrystals using tri-noctyl phosphine oxide as a phosphorus source. Nano Lett 11:188. https://doi.org/10.1021/nl103400a

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, N. (2022). Transmission Electron Microscopy: A Powerful and Novel Scientific Technique with Nanoscale Resolution for Characterization of Materials. In: Kamaraj, SK., Thirumurugan, A., Dhanabalan, S.S., Hevia, S.A. (eds) Microscopic Techniques for the Non-Expert. Springer, Cham. https://doi.org/10.1007/978-3-030-99542-3_9

Download citation

Publish with us

Policies and ethics