Skip to main content

Scanning Probe Microscopy: Tipping the Path Toward Atomic Visions

  • Chapter
  • First Online:
Microscopic Techniques for the Non-Expert

Abstract

The Scanning Probe Microscopy (SPMs) are a set of techniques to obtain information about composition, structure, electric and magnetic properties, between other, of the surface of different samples, from scale to atomic scale, which also have the ability even to modify its surfaces. SPMs include Scanning Tunneling Microscopy (STM), Atomic Force Microscopy (AFM), and Scanning Electrochemical Microscopy (SECM). In this chapter, the fundamentals of SPMs, basic devices, and the signal response used to generate the sample surface image are reviewed. With emphasis on the AFM technique, its operation modes are described, further describes the purpose of the measurements, as well as artifacts that may affect the results and recommendations for solving them. Recommendations for successful imaging and processing tips, as well as good experimental practices are provided. Different applications examples and the results obtained are shown. This chapter aims to provide to non-specialized readers in SPMs an overview of surface characterization techniques, their advantages, and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Binnig G, Rohrer H (1983) Scanning tunneling microscopy. Surf Sci 126(1–3):236–244. https://doi.org/10.1016/0039-6028(83)90716-1

    Article  CAS  Google Scholar 

  2. Feenstra RM (1994) Scanning tunneling spectroscopy. Surf Sci 299–300:965–979. https://doi.org/10.1016/0039-6028(94)90710-2

    Article  Google Scholar 

  3. Voigtländer B (2015) Scanning probe microscopy – atomic force microscopy and scanning tunneling microscopy. Springer. https://doi.org/10.1007/978-3-662-45240-0

  4. Ibe JP et al (1990) On the electrochemical etching of tips for scanning tunneling microscopy. J Vac Sci Technol A Vacuum Surfaces Film 8(4):3570–3575. https://doi.org/10.1116/1.576509

    Article  CAS  Google Scholar 

  5. Binnig G, Rohrer H, Gerber C, Weibel E (1982) Tunneling through a controllable vacuum gap. Appl Phys Lett 40:178–180. https://doi.org/10.1063/1.92999

    Article  CAS  Google Scholar 

  6. Binnig G, Rohrer H, Gerber C, Weibel E (1982) Surface studies by scanning tunneling microscopy. Phys Rev Lett 49(1–5):57–61. https://doi.org/10.1103/PhysRevLett.49.57

    Article  Google Scholar 

  7. Erwinrossen (2007) File: atomic resolution Au100.JPG – Wikimedia Commons. [online] Commonswikimedia.org Available at: (https://commons.wikimedia.org/wiki/File:Atomic_resolution_Au100.JPG)

    Google Scholar 

  8. Vázquez de Parga AL, Miranda R (2012) Scanning tunneling spectroscopy. In: Bhushan B (ed) Encyclopedia of nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9751-4_111

    Chapter  Google Scholar 

  9. Julian Chen C (1988) Theory of scanning tunneling spectroscopy. J Vac Sci Technol A 6:319–322. https://doi.org/10.1116/1.575444

    Article  Google Scholar 

  10. NobelPrize.org. The Nobel Prize in Physics 1986. [online] Available at: (https://www.nobelprize.org/prizes/physics/1986/summary/). Accessed 5 Mar 2021

    Google Scholar 

  11. Binning G, Quate CF (1986) Atomic force microscope. Phys Rev Lett 56(9):930–933. https://doi.org/10.1103/PhysRevLett.56.930

    Article  Google Scholar 

  12. Rugar D, Hansma P (1990) Atomic force microscopy. Phys Today 43(10):23–30. https://doi.org/10.1063/1.881238

    Article  CAS  Google Scholar 

  13. Meyer E (1992) Atomic force microscopy. Prog Surf Sci 31(1):3–49. https://doi.org/10.1016/0079-6816(92)90009-7

    Article  Google Scholar 

  14. Johnson D, Hilal N, Bowen WR (2009) Basic principles of atomic force microscopy. In: Atomic force microscopy in process engineering. Butterworth-Heinemann, pp 1–30. https://doi.org/10.1016/B978-1-85617-517-3.00001-8

    Chapter  Google Scholar 

  15. Zhang H, Huang J, Wang Y, Liu R, Huai X, Jiang J, Anfuso C (2018) Atomic force microscopy for two-dimensional materials: a tutorial review. Opt Commun 406:3–17. https://doi.org/10.1016/j.optcom.2017.05.015

    Article  CAS  Google Scholar 

  16. Slim C, Griveau S, Bedioui F (2019) Scanning electrochemical microscopy. In: Encyclopedia of analytical science, 3rd edn. Academic Press, pp 79–88. https://doi.org/10.1016/B978-0-12-409547-2.13947-2

    Chapter  Google Scholar 

  17. Bard AJ, Mirkin MV (2012) Scanning electrochemical microscopy, 2nd edn. CRC Press Taylor & Francis, pp 1–15. https://doi.org/10.1201/b11850

    Book  Google Scholar 

  18. LaForge F (2011) File: Fig6 SECM.jpg – Wikimedia Commons. [online] Commons.wikimedia.org. Available at: (https://commons.wikimedia.org/w/index.php?curid=17338959)

    Google Scholar 

  19. Fung R, Huang S (2001) Dynamic modeling and vibration analysis of the atomic force microscope. ASME J Vib Acoust 123(4):502–509. https://doi.org/10.1115/1.1389084

    Article  Google Scholar 

  20. Basso M, Giarre L, Dahleh M, Mezic I Numerical analysis of complex dynamics in atomic force microscopes. In: Proceedings of the 1998 IEEE international conference on control applications (Cat. No. 98CH36104), IEEE. 2, (1998), 1026–1030. https://doi.org/10.1109/CCA.1998.721613

  21. Sebastian A, Salapaka M, Chen D, Cleveland J Harmonic analysis based modeling of tapping-mode AFM. In: Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251), IEEE 1, (1999), 232–236. https://doi.org/10.1109/ACC.1999.782775

  22. Jalili N, Laxminarayana K (2004) A review of atomic force microscopy imaging systems: application to molecular metrology and biological sciences. Mechatronics 14(8):907–945. https://doi.org/10.1016/j.mechatronics.2004.04.005

    Article  Google Scholar 

  23. Carpick RW, Salmeron M (1997) Scratching the surface: fundamental investigations of tribology with atomic force microscopy. Chem Rev 97(4):1163–1194. https://doi.org/10.1021/cr960068q

    Article  CAS  PubMed  Google Scholar 

  24. Giessibl FJ (1995) Atomic resolution of the silicon (111)-(7x7) surface by atomic force microscopy. Science 267(5194):68–71. https://doi.org/10.1126/science.267.5194.68

    Article  CAS  PubMed  Google Scholar 

  25. Overney RM, Meyer E, Frommer J, Brodbeck D, Lüthi R, Howald L, Giintherodt H-J, Fujihira M, Takano H, Gotoh Y (1992) Friction measurements on phase-separated thin films with a modified atomic force microscope. Nature 359:133–135. https://doi.org/10.1038/359133a0

    Article  CAS  Google Scholar 

  26. Garcı́a R, San Paulo A Amplitude curves and operating regimes in dynamic atomic force microscopy, Ultramicroscopy, 82, 1–4, (2000), 79–83. https://doi.org/10.1016/S0304-3991(99)00132-1

  27. Magonov SN, Elings V, Whangbo M-H (1997) Phase imaging and stiffness in tapping-mode atomic force microscopy. Surf Sci 375(3–2):L385–L391. https://doi.org/10.1016/S0039-6028(96)01591-9

    Article  CAS  Google Scholar 

  28. Xiang W, Tian Y, Liu X (2020) Dynamic analysis of tapping mode atomic force microscope (AFM) for critical dimension measurement. Precis Eng 64:269–279. https://doi.org/10.1016/j.precisioneng.2020.03.023

    Article  Google Scholar 

  29. Nguyen-Tri P, Ghassemi P, Carriere P, Nanda S, Assadi AA, Nguyen DD (2020) Recent applications of advanced atomic force microscopy in polymer science: a review. Polymers 12(5):1142. https://doi.org/10.3390/polym12051142

    Article  CAS  PubMed Central  Google Scholar 

  30. Garcia R (2020) Nanomechanical mapping of soft materials with the atomic force microscope: methods, theory and applications. Chem Soc Rev 49:5850–5884. https://doi.org/10.1039/D0CS00318B

    Article  CAS  Google Scholar 

  31. Benstetter G, Biberger R, Liu D (2009) A review of advanced scanning probe microscope analysis of functional films and semiconductor devices. Thin Solid Films 517(17):5100–5105. https://doi.org/10.1016/j.tsf.2009.03.176

    Article  CAS  Google Scholar 

  32. Hartmann U (1999) Magnetic force microscopy. Annu Rev Mater Sci 29(1):53–87. https://doi.org/10.1146/annurev.matsci.29.1.53

    Article  CAS  Google Scholar 

  33. Macpherson JV, Unwin PR (2000) Combined scanning electrochemical-atomic force microscopy. Anal Chem 72(2):276–285. https://doi.org/10.1021/ac990921w

    Article  CAS  PubMed  Google Scholar 

  34. Tseng AA, Notargiacomo A, Chen TP (2005) Nanofabrication by scanning probe microscope lithography: A review. J Vac Sci Technol B 23:877–894. https://doi.org/10.1116/1.1926293

    Article  CAS  Google Scholar 

  35. Caballero-Briones F, Palacios-Padrós A, Calzadilla O, Sanz F (2010) Evidence and analysis of parallel growth mechanisms in Cu2O films prepared by Cu anodization. Electrochim Acta 55(14):4353–4358. https://doi.org/10.1016/j.electacta.2009.10.031

    Article  CAS  Google Scholar 

  36. Iwan A, Caballero-Briones F, Bogdanowicz KA, Barceinas-Sánchez JDO, Przybyl W, Januszko AM, Baron-Miranda JA, Espinosa-Ramirez AP (2018) Jesus Guerrero-Contreras, Optical and electrical properties of graphene oxide and reduced graphene oxide films deposited onto glass and Ecoflex® substrates towards organic solar cells. Adv Mater Lett 9:58–65. https://doi.org/10.5185/amlett.2018.1870

    Article  CAS  Google Scholar 

  37. Barón-Miranda A, Calzadilla O, Arvizu-Rodríguez LE, Fernández-Muñoz JL, Guarneros-Aguilar C, Chale-Lara FF, Páramo-García U, Caballero-Briones F (2016) Local electrical response in alkaline-doped electrodeposited CuInSe2/Cu films. Coatings 6(4):71. https://doi.org/10.3390/coatings6040071

    Article  CAS  Google Scholar 

  38. Caballero-Briones F, Palacios-Padrós A, Sanz F (2011) CuInSe2 films prepared by three step pulsed electrodeposition. Deposition mechanisms, optical and photoelectrochemical studies. Electrochim Acta 56(26):9556–9567. https://doi.org/10.1016/j.electacta.2011.06.024

    Article  CAS  Google Scholar 

  39. Peñaloza-Mendoza Y, Alvira FC, Caballero-Briones F, Guarneros-Aguilar C, Ponce L (2018) Influence of laser pulse regime on the structure and optical properties of TiO2 nanolayers. Mater Res Express 5:125022. https://doi.org/10.1088/2053-1591/aae2e5

    Article  CAS  Google Scholar 

  40. Barón-Miranda JA, Calzadilla O, San-Juan-Hernández S, Diez-Pérez I, Díaz J, Sanz F, Chále-Lara FF, Espinosa-Faller FJ, Caballero-Briones F (2018) Influence of texture on the electrical properties of Al-doped ZnO films prepared by ultrasonic spray pyrolysis. J Mater Sci Mater Electron 29:2016–2025. https://doi.org/10.1007/s10854-017-8113-x

    Article  CAS  Google Scholar 

  41. Caballero-Briones F, Calzadilla O, Chalé-Lara F, Rejón V, Peña JL (2015) Mg-doped CdS films prepared by chemical bath deposition, optical and electrical properties. Chalcogenide Lett 12(4):137–145

    CAS  Google Scholar 

  42. Caballero-Briones F, Santana G, Flores T, Ponce L (2016) Photoluminescence response in carbon films deposited by pulsed laser deposition onto GaAs substrates at low vacuum. J Nanotechnol 2016:1–6. https://doi.org/10.1155/2016/5349697

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financed by CONACYT-Mexico under 40798 Grant and by SIP-IPN under 2021-1513. FRP is financed by CONACYT and BEIFI-IPN grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Caballero-Briones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ruiz-Perez, F., Tolentino-Hernandez, R.V., Barón-Miranda, J.A., Caballero-Briones, F. (2022). Scanning Probe Microscopy: Tipping the Path Toward Atomic Visions. In: Kamaraj, SK., Thirumurugan, A., Dhanabalan, S.S., Hevia, S.A. (eds) Microscopic Techniques for the Non-Expert. Springer, Cham. https://doi.org/10.1007/978-3-030-99542-3_4

Download citation

Publish with us

Policies and ethics