Skip to main content

Hybrid Cardiac Imaging for the Specialist with Expertise in Cardiac Magnetic Resonance

  • Chapter
  • First Online:
Hybrid Cardiac Imaging for Clinical Decision-Making

Abstract

Cardiac imaging aims to establish a correct diagnosis without performing unnecessary invasive procedures, with several imaging modalities in clinical use today. All modalities convey valuable diagnostic information about the heart’s anatomy and function. However, each technique has limitations thus making hybrid imaging potentially attractive. Hybrid imaging encompassing the combination of two or more imaging modalities allows for the synergistic effect of combining the advantages of each technique, while simultaneously reducing the disadvantages of both. Currently, a combined system for computed tomography (CT), positron emission tomography (PET), and magnetic resonance (MR) exists, and is in clinical use for diagnosis of obstructive coronary artery disease (CAD) and several nonischemic diseases. Hybrid PET/MR and CT/MR show promise in obstructive CAD with synergistic effects and refined functional assessment of coronary stenoses. Hybrid PET/MR may have potential for disease monitoring in chronic myocarditis however knowledge on hybrid CT/MR in nonischemic diseases is currently lacking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abraham TP, Dimaano VL, Liang HY. Role of tissue Doppler and strain echocardiography in current clinical practice. Circulation. 2007;116(22):2597–609.

    Article  PubMed  Google Scholar 

  2. Lam WC, Pennell DJ. Imaging of the heart: historical perspective and recent advances. Postgrad Med J. 2016;92(1084):99–104.

    Article  CAS  PubMed  Google Scholar 

  3. Cury RC, Nieman K, Shapiro MD, Butler J, Nomura CH, Ferencik M, et al. Comprehensive assessment of myocardial perfusion defects, regional wall motion, and left ventricular function by using 64-section multidetector CT. Radiology. 2008;248(2):466–75.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Detrano R, Guerci AD, Carr JJ, Bild DE, Burke G, Folsom AR, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008;358(13):1336–45.

    Article  CAS  PubMed  Google Scholar 

  5. Litt HI, Gatsonis C, Snyder B, Singh H, Miller CD, Entrikin DW, et al. CT angiography for safe discharge of patients with possible acute coronary syndromes. N Engl J Med. 2012;366(15):1393–403.

    Article  CAS  PubMed  Google Scholar 

  6. Priest VL, Scuffham PA, Hachamovitch R, Marwick TH. Cost-effectiveness of coronary computed tomography and cardiac stress imaging in the emergency department: a decision analytic model comparing diagnostic strategies for chest pain in patients at low risk of acute coronary syndromes. JACC Cardiovasc Imaging. 2011;4(5):549–56.

    Article  PubMed  Google Scholar 

  7. SCOT-HEART Investigators. CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): an open-label, parallel-group, multicentre trial. Lancet. 2015;385(9985):2383–91.

    Article  Google Scholar 

  8. Ghosh N, Rimoldi OE, Beanlands RS, Camici PG. Assessment of myocardial ischaemia and viability: role of positron emission tomography. Eur Heart J. 2010;31(24):2984–95.

    Article  PubMed  Google Scholar 

  9. Di Carli M, Czernin J, Hoh CK, Gerbaudo VH, Brunken RC, Huang SC, et al. Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery disease. Circulation. 1995;91(7):1944–51.

    Article  PubMed  Google Scholar 

  10. Uren NG, Melin JA, De Bruyne B, Wijns W, Baudhuin T, Camici PG. Relation between myocardial blood flow and the severity of coronary-artery stenosis. N Engl J Med. 1994;330(25):1782–8.

    Article  CAS  PubMed  Google Scholar 

  11. Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000;343(20):1445–53.

    Article  CAS  PubMed  Google Scholar 

  12. Gupta A, Lee VS, Chung YC, Babb JS, Simonetti OP. Myocardial infarction: optimization of inversion times at delayed contrast-enhanced MR imaging. Radiology. 2004;233(3):921–6.

    Article  PubMed  Google Scholar 

  13. Hunold P, Schlosser T, Vogt FM, Eggebrecht H, Schmermund A, Bruder O, et al. Myocardial late enhancement in contrast-enhanced cardiac MRI: distinction between infarction scar and non-infarction-related disease. AJR Am J Roentgenol. 2005;184(5):1420–6.

    Article  PubMed  Google Scholar 

  14. Mahrholdt H, Wagner A, Judd RM, Sechtem U, Kim RJ. Delayed enhancement cardiovascular magnetic resonance assessment of non-ischaemic cardiomyopathies. Eur Heart J. 2005;26(15):1461–74.

    Article  PubMed  Google Scholar 

  15. Friedrich MG, Strohm O, Schulz-Menger J, Marciniak H, Luft FC, Dietz R. Contrast media-enhanced magnetic resonance imaging visualizes myocardial changes in the course of viral myocarditis. Circulation. 1998;97(18):1802–9.

    Article  CAS  PubMed  Google Scholar 

  16. Ferreira VM, Piechnik SK, Dall’Armellina E, Karamitsos TD, Francis JM, Choudhury RP, et al. Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2012;14:42.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Schalla S, Nagel E, Lehmkuhl H, Klein C, Bornstedt A, Schnackenburg B, et al. Comparison of magnetic resonance real-time imaging of left ventricular function with conventional magnetic resonance imaging and echocardiography. Am J Cardiol. 2001;87(1):95–9.

    Article  CAS  PubMed  Google Scholar 

  18. Kim RJ, Fieno DS, Parrish TB, Harris K, Chen EL, Simonetti O, et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation. 1999;100(19):1992–2002.

    Article  CAS  PubMed  Google Scholar 

  19. Lipton MJ, Bogaert J, Boxt LM, Reba RC. Imaging of ischemic heart disease. Eur Radiol. 2002;12(5):1061–80.

    Article  PubMed  Google Scholar 

  20. Mordini FE, Haddad T, Hsu LY, Kellman P, Lowrey TB, Aletras AH, et al. Diagnostic accuracy of stress perfusion CMR in comparison with quantitative coronary angiography: fully quantitative, semiquantitative, and qualitative assessment. JACC Cardiovasc Imaging. 2014;7(1):14–22.

    Article  PubMed  PubMed Central  Google Scholar 

  21. McCommis KS, Goldstein TA, Zhang H, Misselwitz B, Gropler RJ, Zheng J. Quantification of myocardial blood volume during dipyridamole and doubtamine stress: a perfusion CMR study. J Cardiovasc Magn Reson. 2007;9(5):785–92.

    Article  PubMed  Google Scholar 

  22. Arheden H, Holmqvist C, Thilen U, Hanseus K, Bjorkhem G, Pahlm O, et al. Left-to-right cardiac shunts: comparison of measurements obtained with MR velocity mapping and with radionuclide angiography. Radiology. 1999;211(2):453–8.

    Article  CAS  PubMed  Google Scholar 

  23. Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med. 2000;41(8):1369–79.

    CAS  PubMed  Google Scholar 

  24. Gilbert KM, Scholl TJ, Handler WB, Alford JK, Chronik BA. Evaluation of a positron emission tomography (PET)-compatible field-cycled MRI (FCMRI) scanner. Magn Reson Med. 2009;62(4):1017–25.

    Article  PubMed  Google Scholar 

  25. Pichler BJ, Judenhofer MS, Catana C, Walton JH, Kneilling M, Nutt RE, et al. Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J Nucl Med. 2006;47(4):639–47.

    PubMed  Google Scholar 

  26. Delso G, Furst S, Jakoby B, Ladebeck R, Ganter C, Nekolla SG, et al. Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med. 2011;52(12):1914–22.

    Article  PubMed  Google Scholar 

  27. Zaidi H, Ojha N, Morich M, Griesmer J, Hu Z, Maniawski P, et al. Design and performance evaluation of a whole-body ingenuity TF PET-MRI system. Phys Med Biol. 2011;56(10):3091–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Takx RA, Blomberg BA, El Aidi H, Habets J, de Jong PA, Nagel E, et al. Diagnostic accuracy of stress myocardial perfusion imaging compared to invasive coronary angiography with fractional flow reserve meta-analysis. Circ Cardiovasc Imaging. 2015;8(1):e002666.

    Article  PubMed  Google Scholar 

  29. Meijboom WB, Van Mieghem CA, van Pelt N, Weustink A, Pugliese F, Mollet NR, et al. Comprehensive assessment of coronary artery stenoses: computed tomography coronary angiography versus conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina. J Am Coll Cardiol. 2008;52(8):636–43.

    Article  PubMed  Google Scholar 

  30. Misaka T, Sugitani Y, Asato N, Matsukubo Y, Uemura M, Ashikaga R, et al. Coronary artery to aortic luminal attenuation ratio in coronary CT angiography for the diagnosis of haemodynamically significant coronary artery stenosis. Br J Radiol. 2020;93(1105):20190003.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kunze KP, Nekolla SG, Rischpler C, Zhang SH, Hayes C, Langwieser N, et al. Myocardial perfusion quantification using simultaneously acquired (13) NH3 -ammonia PET and dynamic contrast-enhanced MRI in patients at rest and stress. Magn Reson Med. 2018;80(6):2641–54.

    Article  CAS  PubMed  Google Scholar 

  32. Kellman P, Hansen MS, Nielles-Vallespin S, Nickander J, Themudo R, Ugander M, et al. Myocardial perfusion cardiovascular magnetic resonance: optimized dual sequence and reconstruction for quantification. J Cardiovasc Magn Reson. 2017;19(1):43.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Engblom H, Xue H, Akil S, Carlsson M, Hindorf C, Oddstig J, et al. Fully quantitative cardiovascular magnetic resonance myocardial perfusion ready for clinical use: a comparison between cardiovascular magnetic resonance imaging and positron emission tomography. J Cardiovasc Magn Reson. 2017;19(1):78.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Knott KD, Camaioni C, Ramasamy A, Augusto JA, Bhuva AN, Xue H, et al. Quantitative myocardial perfusion in coronary artery disease: a perfusion mapping study. J Magn Reson Imaging. 2019;50(3):756–62.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kotecha T, Martinez-Naharro A, Boldrini M, Knight D, Hawkins P, Kalra S, et al. Automated pixel-wise quantitative myocardial perfusion mapping by CMR to detect obstructive coronary artery disease and coronary microvascular dysfunction: validation against invasive coronary physiology. JACC Cardiovasc Imaging. 2019;12(10):1958–69.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Camaioni C, Knott KD, Augusto JB, Seraphim A, Rosmini S, Ricci F, et al. Inline perfusion mapping provides insights into the disease mechanism in hypertrophic cardiomyopathy. Heart. 2020;106(11):824–9.

    Article  CAS  PubMed  Google Scholar 

  37. Hachamovitch R, Hayes SW, Friedman JD, Cohen I, Berman DS. Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation. 2003;107(23):2900–7.

    Article  PubMed  Google Scholar 

  38. Wissmann L, Gotschy A, Santelli C, Tezcan KC, Hamada S, Manka R, et al. Analysis of spatiotemporal fidelity in quantitative 3D first-pass perfusion cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2017;19(1):11.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Nensa F, Bamberg F, Rischpler C, Menezes L, Poeppel TD, la Fougere C, et al. Hybrid cardiac imaging using PET/MRI: a joint position statement by the European Society of Cardiovascular Radiology (ESCR) and the European Association of Nuclear Medicine (EANM). Eur Radiol. 2018;28(10):4086–101.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rahimtoola SH. A perspective on the three large multicenter randomized clinical trials of coronary bypass surgery for chronic stable angina. Circulation. 1985;72(6 Pt 2):V123–35.

    CAS  PubMed  Google Scholar 

  41. Heusch G. Hibernating myocardium. Physiol Rev. 1998;78(4):1055–85.

    Article  CAS  PubMed  Google Scholar 

  42. Beanlands RS, Hendry PJ, Masters RG, deKemp RA, Woodend K, Ruddy TD. Delay in revascularization is associated with increased mortality rate in patients with severe left ventricular dysfunction and viable myocardium on fluorine 18-fluorodeoxyglucose positron emission tomography imaging. Circulation. 1998;98(19 Suppl):Ii51–6.

    CAS  PubMed  Google Scholar 

  43. Di Carli MF, Davidson M, Little R, Khanna S, Mody FV, Brunken RC, et al. Value of metabolic imaging with positron emission tomography for evaluating prognosis in patients with coronary artery disease and left ventricular dysfunction. Am J Cardiol. 1994;73(8):527–33.

    Article  PubMed  Google Scholar 

  44. Schinkel AF, Poldermans D, Elhendy A, Bax JJ. Assessment of myocardial viability in patients with heart failure. J Nucl Med. 2007;48(7):1135–46.

    Article  PubMed  Google Scholar 

  45. Nensa F, Poeppel TD, Beiderwellen K, Schelhorn J, Mahabadi AA, Erbel R, et al. Hybrid PET/MR imaging of the heart: feasibility and initial results. Radiology. 2013;268(2):366–73.

    Article  PubMed  Google Scholar 

  46. Rischpler C, Langwieser N, Souvatzoglou M, Batrice A, van Marwick S, Snajberk J, et al. PET/MRI early after myocardial infarction: evaluation of viability with late gadolinium enhancement transmurality vs. 18F-FDG uptake. Eur Heart J Cardiovasc Imaging. 2015;16(6):661–9.

    PubMed  Google Scholar 

  47. Priamo J, Adamopoulos D, Rager O, Frei A, Noble S, Carballo D, et al. Downstream indication to revascularization following hybrid cardiac PET/MRI: preliminary results. Nucl Med Commun. 2017;38(6):515–22.

    Article  PubMed  Google Scholar 

  48. Dall’Armellina E, Karia N, Lindsay AC, Karamitsos TD, Ferreira V, Robson MD, et al. Dynamic changes of edema and late gadolinium enhancement after acute myocardial infarction and their relationship to functional recovery and salvage index. Circ Cardiovasc Imaging. 2011;4(3):228–36.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bulluck H, Hammond-Haley M, Fontana M, Knight DS, Sirker A, Herrey AS, et al. Quantification of both the area-at-risk and acute myocardial infarct size in ST-segment elevation myocardial infarction using T1-mapping. J Cardiovasc Magn Reson. 2017;19(1):57.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kandler D, Lucke C, Grothoff M, Andres C, Lehmkuhl L, Nitzsche S, et al. The relation between hypointense core, microvascular obstruction and intramyocardial haemorrhage in acute reperfused myocardial infarction assessed by cardiac magnetic resonance imaging. Eur Radiol. 2014;24(12):3277–88.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bulluck H, Dharmakumar R, Arai AE, Berry C, Hausenloy DJ. Cardiovascular magnetic resonance in acute ST-segment-elevation myocardial infarction: recent advances, controversies, and future directions. Circulation. 2018;137(18):1949–64.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bulluck H, White SK, Frohlich GM, Casson SG, O’Meara C, Newton A, et al. Quantifying the area at risk in reperfused ST-segment-elevation myocardial infarction patients using hybrid cardiac positron emission tomography-magnetic resonance imaging. Circ Cardiovasc Imaging. 2016;9(3):e003900.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Grothoff M, Elpert C, Hoffmann J, Zachrau J, Lehmkuhl L, de Waha S, et al. Right ventricular injury in ST-elevation myocardial infarction: risk stratification by visualization of wall motion, edema, and delayed-enhancement cardiac magnetic resonance. Circ Cardiovasc Imaging. 2012;5(1):60–8.

    Article  PubMed  Google Scholar 

  54. Di Carli MF, Prcevski P, Singh TP, Janisse J, Ager J, Muzik O, et al. Myocardial blood flow, function, and metabolism in repetitive stunning. J Nucl Med. 2000;41(7):1227–34.

    PubMed  Google Scholar 

  55. Fukuoka Y, Nakano A, Uzui H, Amaya N, Ishida K, Arakawa K, et al. Reverse blood flow-glucose metabolism mismatch indicates preserved oxygen metabolism in patients with revascularised myocardial infarction. Eur J Nucl Med Mol Imaging. 2013;40(8):1155–62.

    Article  CAS  PubMed  Google Scholar 

  56. Spinelli L, Imbriaco M, Nappi C, Nicolai E, Giugliano G, Ponsiglione A, et al. Early cardiac involvement affects left ventricular longitudinal function in females carrying alpha-galactosidase A mutation: role of hybrid positron emission tomography and magnetic resonance imaging and speckle-tracking echocardiography. Circ Cardiovasc Imaging. 2018;11(4):e007019.

    Article  PubMed  Google Scholar 

  57. Nappi C, Altiero M, Imbriaco M, Nicolai E, Giudice CA, Aiello M, et al. First experience of simultaneous PET/MRI for the early detection of cardiac involvement in patients with Anderson-Fabry disease. Eur J Nucl Med Mol Imaging. 2015;42(7):1025–31.

    Article  CAS  PubMed  Google Scholar 

  58. Knott KD, Augusto JB, Nordin S, Kozor R, Camaioni C, Xue H, et al. Quantitative myocardial perfusion in Fabry disease. Circ Cardiovasc Imaging. 2019;12(7):e008872.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Trivieri MG, Dweck MR, Abgral R, Robson PM, Karakatsanis NA, Lala A, et al. (18)F-sodium fluoride PET/MR for the assessment of cardiac amyloidosis. J Am Coll Cardiol. 2016;68(24):2712–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Manabe O, Yoshinaga K, Ohira H, Masuda A, Sato T, Tsujino I, et al. The effects of 18-h fasting with low-carbohydrate diet preparation on suppressed physiological myocardial (18)F-fluorodeoxyglucose (FDG) uptake and possible minimal effects of unfractionated heparin use in patients with suspected cardiac involvement sarcoidosis. J Nucl Cardiol. 2016;23(2):244–52.

    Article  PubMed  Google Scholar 

  61. von Olshausen G, Hyafil F, Langwieser N, Laugwitz KL, Schwaiger M, Ibrahim T. Detection of acute inflammatory myocarditis in Epstein Barr virus infection using hybrid 18F-fluoro-deoxyglucose-positron emission tomography/magnetic resonance imaging. Circulation. 2014;130(11):925–6.

    Article  Google Scholar 

  62. Nensa F, Poeppel TD, Krings P, Schlosser T. Multiparametric assessment of myocarditis using simultaneous positron emission tomography/magnetic resonance imaging. Eur Heart J. 2014;35(32):2173.

    Article  PubMed  Google Scholar 

  63. Greulich S, Deluigi CC, Gloekler S, Wahl A, Zurn C, Kramer U, et al. CMR imaging predicts death and other adverse events in suspected cardiac sarcoidosis. JACC Cardiovasc Imaging. 2013;6(4):501–11.

    Article  PubMed  Google Scholar 

  64. Youssef G, Leung E, Mylonas I, Nery P, Williams K, Wisenberg G, et al. The use of 18F-FDG PET in the diagnosis of cardiac sarcoidosis: a systematic review and metaanalysis including the Ontario experience. J Nucl Med. 2012;53(2):241–8.

    Article  CAS  PubMed  Google Scholar 

  65. Birnie DH, Sauer WH, Bogun F, Cooper JM, Culver DA, Duvernoy CS, et al. HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis. Heart Rhythm. 2014;11(7):1305–23.

    Article  PubMed  Google Scholar 

  66. Slart R, Glaudemans A, Lancellotti P, Hyafil F, Blankstein R, Schwartz RG, et al. A joint procedural position statement on imaging in cardiac sarcoidosis: from the Cardiovascular and Inflammation & Infection Committees of the European Association of Nuclear Medicine, the European Association of Cardiovascular Imaging, and the American Society of Nuclear Cardiology. J Nucl Cardiol. 2018;25(1):298–319.

    Article  PubMed  Google Scholar 

  67. Schneider S, Batrice A, Rischpler C, Eiber M, Ibrahim T, Nekolla SG. Utility of multimodal cardiac imaging with PET/MRI in cardiac sarcoidosis: implications for diagnosis, monitoring and treatment. Eur Heart J. 2014;35(5):312.

    Article  PubMed  Google Scholar 

  68. Wada K, Niitsuma T, Yamaki T, Masuda A, Ito H, Kubo H, et al. Simultaneous cardiac imaging to detect inflammation and scar tissue with (18)F-fluorodeoxyglucose PET/MRI in cardiac sarcoidosis. J Nucl Cardiol. 2016;23(5):1180–2.

    Article  PubMed  Google Scholar 

  69. White JA, Rajchl M, Butler J, Thompson RT, Prato FS, Wisenberg G. Active cardiac sarcoidosis: first clinical experience of simultaneous positron emission tomography—magnetic resonance imaging for the diagnosis of cardiac disease. Circulation. 2013;127(22):e639–41.

    Article  PubMed  Google Scholar 

  70. Wicks EC, Menezes LJ, Barnes A, Mohiddin SA, Sekhri N, Porter JC, et al. Diagnostic accuracy and prognostic value of simultaneous hybrid 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging in cardiac sarcoidosis. Eur Heart J Cardiovasc Imaging. 2018;19(7):757–67.

    Article  PubMed  Google Scholar 

  71. Hanneman K, Kadoch M, Guo HH, Jamali M, Quon A, Iagaru A, et al. Initial experience with simultaneous 18F-FDG PET/MRI in the evaluation of cardiac sarcoidosis and myocarditis. Clin Nucl Med. 2017;42(7):e328–34.

    Article  PubMed  Google Scholar 

  72. Dweck MR, Abgral R, Trivieri MG, Robson PM, Karakatsanis N, Mani V, et al. Hybrid magnetic resonance imaging and positron emission tomography with fluorodeoxyglucose to diagnose active cardiac sarcoidosis. JACC Cardiovasc Imaging. 2018;11(1):94–107.

    Article  PubMed  Google Scholar 

  73. Cheng L, Ma L, Schoenhagen P, Ye H, Lou X, Gao Y, et al. Comparison of three-dimensional volume-targeted thin-slab FIESTA magnetic resonance angiography and 64-multidetector computed tomographic angiography for the identification of proximal coronary stenosis. Int J Cardiol. 2013;167(6):2969–76.

    Article  PubMed  Google Scholar 

  74. Chen MY, Bandettini WP, Shanbhag SM, Vasu S, Booker OJ, Leung SW, et al. Concordance and diagnostic accuracy of vasodilator stress cardiac MRI and 320-detector row coronary CTA. Int J Cardiovasc Imaging. 2014;30(1):109–19.

    Article  CAS  PubMed  Google Scholar 

  75. Bettencourt N, Chiribiri A, Schuster A, Ferreira N, Sampaio F, Pires-Morais G, et al. Direct comparison of cardiac magnetic resonance and multidetector computed tomography stress-rest perfusion imaging for detection of coronary artery disease. J Am Coll Cardiol. 2013;61(10):1099–107.

    Article  PubMed  Google Scholar 

  76. Bettencourt N, Ferreira ND, Leite D, Carvalho M, Ferreira WDS, Schuster A, et al. CAD detection in patients with intermediate-high pre-test probability: low-dose CT delayed enhancement detects ischemic myocardial scar with moderate accuracy but does not improve performance of a stress-rest CT perfusion protocol. JACC Cardiovasc Imaging. 2013;6(10):1062–71.

    Article  PubMed  Google Scholar 

  77. Donati OF, Scheffel H, Stolzmann P, Baumuller S, Plass A, Leschka S, et al. Combined cardiac CT and MRI for the comprehensive workup of hemodynamically relevant coronary stenoses. AJR Am J Roentgenol. 2010;194(4):920–6.

    Article  PubMed  Google Scholar 

  78. Scheffel H, Stolzmann P, Alkadhi H, Azemaj N, Plass A, Baumueller S, et al. Low-dose CT and cardiac MR for the diagnosis of coronary artery disease: accuracy of single and combined approaches. Int J Cardiovasc Imaging. 2010;26(5):579–90.

    Article  PubMed  Google Scholar 

  79. Groothuis JG, Beek AM, Brinckman SL, Meijerink MR, van den Oever ML, Hofman MB, et al. Combined non-invasive functional and anatomical diagnostic work-up in clinical practice: the magnetic resonance and computed tomography in suspected coronary artery disease (MARCC) study. Eur Heart J. 2013;34(26):1990–8.

    Article  CAS  PubMed  Google Scholar 

  80. von Spiczak J, Manka R, Gotschy A, Oebel S, Kozerke S, Hamada S, et al. Fusion of CT coronary angiography and whole-heart dynamic 3D cardiac MR perfusion: building a framework for comprehensive cardiac imaging. Int J Cardiovasc Imaging. 2018;34(4):649–60.

    Article  Google Scholar 

  81. Danad I, Szymonifka J, Twisk JWR, Norgaard BL, Zarins CK, Knaapen P, et al. Diagnostic performance of cardiac imaging methods to diagnose ischaemia-causing coronary artery disease when directly compared with fractional flow reserve as a reference standard: a meta-analysis. Eur Heart J. 2017;38(13):991–8.

    PubMed  Google Scholar 

  82. Ronnow Sand NP, Nissen L, Winther S, Petersen SE, Westra J, Christiansen EH, et al. Prediction of coronary revascularization in stable angina: comparison of FFRCT with CMR stress perfusion imaging. JACC Cardiovasc Imaging. 2020;13(4):994–1004.

    Article  PubMed  Google Scholar 

  83. Rizvi A, Han D, Danad I, Ó Hartaigh B, Lee JH, Gransar H, et al. Diagnostic performance of hybrid cardiac imaging methods for assessment of obstructive coronary artery disease compared with stand-alone coronary computed tomography angiography: a meta-analysis. JACC Cardiovasc Imaging. 2018;11(4):589–99.

    Article  PubMed  Google Scholar 

  84. Abadia AF, van Assen M, Martin SS, Vingiani V, Griffith LP, Giovagnoli DA, et al. Myocardial extracellular volume fraction to differentiate healthy from cardiomyopathic myocardium using dual-source dual-energy CT. J Cardiovasc Comput Tomogr. 2020;14(2):162–7.

    Article  PubMed  Google Scholar 

  85. Ohta Y, Kitao S, Yunaga H, Watanabe T, Mukai-Yatagai N, Kishimoto J, et al. Quantitative evaluation of non-ischemic dilated cardiomyopathy by late iodine enhancement using rapid kV switching dual-energy computed tomography: a feasibility study. J Cardiovasc Comput Tomogr. 2019;13(2):148–56.

    Article  PubMed  Google Scholar 

  86. Lee HJ, Im DJ, Youn JC, Chang S, Suh YJ, Hong YJ, et al. Myocardial extracellular volume fraction with dual-energy equilibrium contrast-enhanced cardiac CT in nonischemic cardiomyopathy: a prospective comparison with cardiac MR imaging. Radiology. 2016;280(1):49–57.

    Article  PubMed  Google Scholar 

  87. Sidhu MS, Ghoshhajra BB, Uthamalingam S, Kilcullen N, Engel LC, Medina HM, et al. Clinical experiences of delayed contrast enhancement with cardiac computed tomography: case series. BMC Res Notes. 2013;6:2.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Takaoka H, Funabashi N, Ozawa K, Uehara M, Sano K, Komuro I, et al. Improved diagnosis of detection of late enhancement in left ventricular myocardium using 2nd generation 320-slice CT reconstructed with FIRST in non-ischemic cardiomyopathy. Int Heart J. 2018;59(3):542–9.

    Article  PubMed  Google Scholar 

  89. Ko SM, Hwang SH, Lee HJ. Role of cardiac computed tomography in the diagnosis of left ventricular myocardial diseases. J Cardiovasc Imaging. 2019;27(2):73–92.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Hutton BF, Occhipinti M, Kuehne A, Mathe D, Kovacs N, Waiczies H, et al. Development of clinical simultaneous SPECT/MRI. Br J Radiol. 2018;91(1081):20160690.

    Article  PubMed  Google Scholar 

  91. Lamb J, Holland JP. Advanced methods for radiolabeling multimodality nanomedicines for SPECT/MRI and PET/MRI. J Nucl Med. 2018;59(3):382–9.

    Article  CAS  PubMed  Google Scholar 

  92. Klocke FJ, Baird MG, Lorell BH, Bateman TM, Messer JV, Berman DS, et al. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging—executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging). J Am Coll Cardiol. 2003;42(7):1318–33.

    Article  PubMed  Google Scholar 

  93. Underwood SR, Anagnostopoulos C, Cerqueira M, Ell PJ, Flint EJ, Harbinson M, et al. Myocardial perfusion scintigraphy: the evidence. Eur J Nucl Med Mol Imaging. 2004;31(2):261–91.

    Article  CAS  PubMed  Google Scholar 

  94. Knuuti J, Kajander S, Maki M, Ukkonen H. Quantification of myocardial blood flow will reform the detection of CAD. J Nucl Cardiol. 2009;16(4):497–506.

    Article  PubMed  Google Scholar 

  95. Hamon M, Fau G, Nee G, Ehtisham J, Morello R. Meta-analysis of the diagnostic performance of stress perfusion cardiovascular magnetic resonance for detection of coronary artery disease. J Cardiovasc Magn Reson. 2010;12:29.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Hedeer F, Palmer J, Arheden H, Ugander M. Gated myocardial perfusion SPECT underestimates left ventricular volumes and shows high variability compared to cardiac magnetic resonance imaging—a comparison of four different commercial automated software packages. BMC Med Imaging. 2010;10:10.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Schwitter J, Wacker CM, Wilke N, Al-Saadi N, Sauer E, Huettle K, et al. MR-IMPACT II: magnetic resonance imaging for myocardial perfusion assessment in coronary artery disease trial: perfusion-cardiac magnetic resonance vs. single-photon emission computed tomography for the detection of coronary artery disease: a comparative multicentre, multivendor trial. Eur Heart J. 2013;34(10):775–81.

    Article  PubMed  Google Scholar 

  98. Greenwood JP, Maredia N, Younger JF, Brown JM, Nixon J, Everett CC, et al. Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet. 2012;379(9814):453–60.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Gibbons RJ, Verani MS, Behrenbeck T, Pellikka PA, O’Connor MK, Mahmarian JJ, et al. Feasibility of tomographic 99mTc-hexakis-2-methoxy-2-methylpropyl-isonitrile imaging for the assessment of myocardial area at risk and the effect of treatment in acute myocardial infarction. Circulation. 1989;80(5):1277–86.

    Article  CAS  PubMed  Google Scholar 

  100. Ugander M, Soneson H, Engblom H, van der Pals J, Erlinge D, Heiberg E, et al. Quantification of myocardium at risk in myocardial perfusion SPECT by co-registration and fusion with delayed contrast-enhanced magnetic resonance imaging—an experimental ex vivo study. Clin Physiol Funct Imaging. 2012;32(1):33–8.

    Article  CAS  PubMed  Google Scholar 

  101. Nordlund D, Kanski M, Jablonowski R, Koul S, Erlinge D, Carlsson M, et al. Experimental validation of contrast-enhanced SSFP cine CMR for quantification of myocardium at risk in acute myocardial infarction. J Cardiovasc Magn Reson. 2017;19(1):12.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Sorensson P, Heiberg E, Saleh N, Bouvier F, Caidahl K, Tornvall P, et al. Assessment of myocardium at risk with contrast enhanced steady-state free precession cine cardiovascular magnetic resonance compared to single-photon emission computed tomography. J Cardiovasc Magn Reson. 2010;12:25.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Dilsizian V, Bonow RO, Epstein SE, Fananapazir L. Myocardial ischemia detected by thallium scintigraphy is frequently related to cardiac arrest and syncope in young patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 1993;22(3):796–804.

    Article  CAS  PubMed  Google Scholar 

  104. Cecchi F, Olivotto I, Gistri R, Lorenzoni R, Chiriatti G, Camici PG. Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med. 2003;349(11):1027–35.

    Article  CAS  PubMed  Google Scholar 

  105. Terai H, Shimizu M, Ino H, Yamaguchi M, Uchiyama K, Oe K, et al. Changes in cardiac sympathetic nerve innervation and activity in pathophysiologic transition from typical to end-stage hypertrophic cardiomyopathy. J Nucl Med. 2003;44(10):1612–7.

    PubMed  Google Scholar 

  106. Zhao C, Shuke N, Okizaki A, Yamamoto W, Sato J, Ishikawa Y, et al. Comparison of myocardial fatty acid metabolism with left ventricular function and perfusion in cardiomyopathies: by 123I-BMIPP SPECT and 99mTc-tetrofosmin electrocardiographically gated SPECT. Ann Nucl Med. 2003;17(7):541–8.

    Article  CAS  PubMed  Google Scholar 

  107. Pennell DJ, Sechtem UP, Higgins CB, Manning WJ, Pohost GM, Rademakers FE, et al. Clinical indications for cardiovascular magnetic resonance (CMR): consensus panel report. Eur Heart J. 2004;25(21):1940–65.

    Article  PubMed  Google Scholar 

  108. Yamanari H, Kakishita M, Fujimoto Y, Hashimoto K, Kiyooka T, Katayama Y, et al. Effect of regional myocardial perfusion abnormalities on regional myocardial early diastolic function in patients with hypertrophic cardiomyopathy. Heart Vessel. 1997;12(4):192–8.

    Article  CAS  Google Scholar 

  109. Yuki H, Utsunomiya D, Shiraishi S, Takashio S, Sakamoto F, Tsuda N, et al. Correlation of left ventricular dyssynchrony on gated myocardial perfusion SPECT analysis with extent of late gadolinium enhancement on cardiac magnetic resonance imaging in hypertrophic cardiomyopathy. Heart Vessel. 2018;33(6):623–9.

    Article  Google Scholar 

  110. Sazonova SI, Ilyushenkova JN, Lishmanov YB, Batalov RE, Sazonov AE, Larionova LA, et al. Assessment of radiological techniques application possibility for non-invasive diagnostics of latent inflammatory processes in myocardium in patients with atrial fibrillation. Ann Nucl Med. 2016;30(10):738–48.

    Article  CAS  PubMed  Google Scholar 

  111. Niederkohr RD, Daniels C, Raman SV. Concordant findings on myocardial perfusion SPECT and cardiac magnetic resonance imaging in a patient with myocarditis. J Nucl Cardiol. 2008;15(3):466–8.

    Article  PubMed  Google Scholar 

  112. Kataoka S, Momose M, Fukushima K, Serizawa N, Suzuki A, Kondo C, et al. Regional myocardial damage and active inflammation in patients with cardiac sarcoidosis detected by non-invasive multi-modal imaging. Ann Nucl Med. 2017;31(2):135–43.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nickander, J., Ugander, M. (2022). Hybrid Cardiac Imaging for the Specialist with Expertise in Cardiac Magnetic Resonance. In: Nudi, F., Schillaci, O., Biondi-Zoccai, G., Iskandrian, A.E. (eds) Hybrid Cardiac Imaging for Clinical Decision-Making. Springer, Cham. https://doi.org/10.1007/978-3-030-99391-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99391-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99390-0

  • Online ISBN: 978-3-030-99391-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics