Skip to main content

Graphene-Based Nanomaterial for Supercapacitor Application

  • Chapter
  • First Online:
Nanostructured Materials for Supercapacitors

Part of the book series: Advances in Material Research and Technology ((AMRT))

Abstract

Graphene is a thick layer nanomaterial of carbon that plays an immense role in the areas of supercapacitor designing in the market of electric devices. Their two-dimensional structure, high electron movement, massive surface area, and high strength pay much attention to their electrical as well as thermal conductivity parameters in comparison to other carbon-based materials. Moreover, the easy admittance of electrolytes in pores of graphene along with not variable pore size distribution gives the most favorable condition for supercapacitors. In this chapter, we discuss the current scenario of research and development in the field of graphene-based nanomaterials as efficient supercapacitors. It involves graphene structure, synthesis of graphene, graphene derivatization, and graphene-based hybrid composites such as symmetric as well as asymmetric supercapacitors and also to be explored more chief domains of research for popularizing this nanomaterial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, Graphene based materials: past, present and future. Prog. Mater. Sci. 56, 1178–1271 (2011). https://doi.org/10.1016/j.pmatsci.2011.03.003

    Article  CAS  Google Scholar 

  2. P. Blake, P.D. Brimicombe, R.R. Nair, T.J. Booth, D. Jiang, F. Schedin, L.A. Ponomarenko, S.V. Morozov, H.F. Gleeson, E.W. Hill, A.K. Geim, K.S. Novoselov, Graphene-based liquid crystal device. Nano Lett. 8, 1704–1708 (2008). https://doi.org/10.1021/nl080649i

    Article  Google Scholar 

  3. H.J. Choi, S.M. Jung, J.M. Seo, D.W. Chang, L. Dai, J.B. Baek, Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy 1, 534–551 (2012). https://doi.org/10.1016/j.nanoen.2012.05.001

    Article  CAS  Google Scholar 

  4. S. Verma, B. Verma, Synthesis of sulfur/phosphorous-doped graphene aerogel as a modified super capacitor electrode. Int. J. Chem. Stud. 6, 111–117 (2018)

    CAS  Google Scholar 

  5. W. Du, X. Jiang, L. Zhu, From graphite to graphene: direct liquid-phase exfoliation of graphite to produce single- and few-layered pristine graphene. J. Mater. Chem. A 1, 10592–10606 (2013). https://doi.org/10.1039/c3ta12212c

    Article  CAS  Google Scholar 

  6. X. Xu, C. Liu, Z. Sun, T. Cao, Z. Zhang, E. Wang, Z. Liu, K. Liu, Interfacial engineering in graphene bandgap. Chem. Soc. Rev. 47, 3059–3099 (2018). https://doi.org/10.1039/c7cs00836h

    Article  CAS  Google Scholar 

  7. Y. Jiang, J. Liu, Definitions of pseudocapacitive materials: a brief review. Energy Environ. Mater. 2, 30–37 (2019). https://doi.org/10.1002/eem2.12028

    Article  Google Scholar 

  8. M. Vangari, T. Pryor, L. Jiang, Supercapacitors: review of materials and fabrication methods. J. Energy Eng. 139, 72–79 (2013). https://doi.org/10.1061/(asce)ey.1943-7897.0000102

    Article  Google Scholar 

  9. G. Yang, L. Li, W.B. Lee, M.C. Ng, Structure of graphene and its disorders: a review. Sci. Technol. Adv. Mater. 19, 613–648 (2018). https://doi.org/10.1080/14686996.2018.1494493

    Article  CAS  Google Scholar 

  10. M.K. Kavitha, M. Jaiswal, Graphene : a review of optical properties and photonic applications. Asian J. Phys. 25, 809–831 (2016)

    Google Scholar 

  11. J.M. Raimond, M. Brune, Q. Computation, F. De Martini, C. Monroe, Electric field effect in atomically thin carbon films. 306, 666–670 (2004)

    Google Scholar 

  12. Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563–568 (2008). https://doi.org/10.1038/nnano.2008.215

  13. T. Szabó, O. Berkesi, P. Forgó, K. Josepovits, Y. Sanakis, D. Petridis, I. Dékány, Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater. 18, 2740–2749 (2006). https://doi.org/10.1021/cm060258+

    Article  CAS  Google Scholar 

  14. H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonson, D.H. Adamson, R.K. Prud’homme, R. Car, D.A. Seville, I.A. Aksay, Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110, 8535–8539 (2006). https://doi.org/10.1021/jp060936f

  15. C. Botas, P. Álvarez, P. Blanco, M. Granda, C. Blanco, R. Santamaría, L.J. Romasanta, R. Verdejo, M.A. López-Manchado, R. Menéndez, Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods. Carbon 65, 156–164 (2013). https://doi.org/10.1016/j.carbon.2013.08.009

    Article  CAS  Google Scholar 

  16. A.V. Talyzin, G. Mercier, A. Klechikov, M. Hedenström, D. Johnels, D. Wei, D. Cotton, A. Opitz, E. Moons, Brodie versus Hummers graphite oxides for preparation of multi-layered materials. Carbon 115, 430–440 (2017). https://doi.org/10.1016/j.carbon.2016.12.097

    Article  CAS  Google Scholar 

  17. P. Feicht, J. Biskupek, T.E. Gorelik, J. Renner, C.E. Halbig, M. Maranska, F. Puchtler, U. Kaiser, S. Eigler, Brodie’s or Hummers’ method: oxidation conditions determine the structure of graphene oxide. Chem. Eur. J. 25, 8955–8959 (2019). https://doi.org/10.1002/chem.201901499

    Article  CAS  Google Scholar 

  18. H.L. Poh, F. Šaněk, A. Ambrosi, G. Zhao, Z. Sofer, M. Pumera, Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties. Nanoscale 4, 3515–3522 (2012). https://doi.org/10.1039/c2nr30490b

    Article  CAS  Google Scholar 

  19. D.R. Dreyer, H.-P. Jia, C.W. Bielawski, Graphene oxide: a convenient carbocatalyst for facilitating oxidation and hydration reactions. Angew. Chem. 122, 6965–6968 (2010). https://doi.org/10.1002/ange.201002160

    Article  Google Scholar 

  20. G. Pavoski, T. Maraschin, F.D.C. Fim, N.M. Balzaretti, G.B. Galland, C.S. Moura, N.R.D.S. Basso, Few layer reduced graphene oxide: evaluation of the best experimental conditions for easy production. Mater. Res. 20, 53–61 (2017). https://doi.org/10.1590/1980-5373-MR-2015-0528

    Article  CAS  Google Scholar 

  21. M. Nováček, O. Jankovský, J. Luxa, D. Sedmidubský, M. Pumera, V. Fila, M. Lhotka, K. Klímová, S. Matějková, Z. Sofer, Tuning of graphene oxide composition by multiple oxidations for carbon dioxide storage and capture of toxic metals. J. Mater. Chem. A 5, 2739–2748 (2017). https://doi.org/10.1039/c6ta03631g

    Article  Google Scholar 

  22. I. Jung, D.A. Field, N.J. Clark, Y. Zhu, D. Yang, R.D. Piner, S. Stankovich, D.A. Dikin, H. Geisler, C.A. Ventrice, R.S. Ruoff, Reduction kinetics of graphene oxide determined by electrical transport measurements and temperature programmed desorption. J. Phys. Chem. C 113, 18480–18486 (2009). https://doi.org/10.1021/jp904396j

    Article  CAS  Google Scholar 

  23. N. Cao, Y. Zhang, Study of reduced graphene oxide preparation by Hummers’ method and related characterization. J. Nanomater. 1–5 (2015). https://doi.org/10.1155/2015/168125

  24. J. Guerrero-Contreras, F. Caballero-Briones, Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method. Mater. Chem. Phys. 153, 209–220 (2015). https://doi.org/10.1016/j.matchemphys.2015.01.005

    Article  CAS  Google Scholar 

  25. M.J. Yoo, H.B. Park, Effect of hydrogen peroxide on properties of graphene oxide in Hummers method. Carbon 141, 515–522 (2019). https://doi.org/10.1016/j.carbon.2018.10.009

    Article  CAS  Google Scholar 

  26. D.-W. Kang, H.-S. Shin, Control of size and physical properties of graphene oxide by changing the oxidation temperature. Carbon Lett. 13, 39–43 (2012). https://doi.org/10.5714/cl.2012.13.1.039

    Article  Google Scholar 

  27. N.I. Zaaba, K.L. Foo, U. Hashim, S.J. Tan, W.W. Liu, C.H. Voon, Synthesis of graphene oxide using modified Hummers method: solvent influence. Procedia Eng. 184, 469–477 (2017). https://doi.org/10.1016/j.proeng.2017.04.118

    Article  CAS  Google Scholar 

  28. T. Chen, B. Zeng, J.L. Liu, J.H. Dong, X.Q. Liu, Z. Wu, X.Z. Yang, Z.M. Li, High throughput exfoliation of graphene oxide from expanded graphite with assistance of strong oxidant in modified Hummers method. J. Phys.: Conf. Ser. 188 (2009). https://doi.org/10.1088/1742-6596/188/1/012051

  29. A. Alkhouzaam, H. Qiblawey, M. Khraisheh, M. Atieh, M. Al-Ghouti, Synthesis of graphene oxides particle of high oxidation degree using a modified Hummers method. Ceram. Int. 46, 23997–24007 (2020). https://doi.org/10.1016/j.ceramint.2020.06.177

    Article  CAS  Google Scholar 

  30. H. Yu, B. Zha, B. Chaoke, R. Li, R. Xing, High-efficient synthesis of graphene oxide based on improved Hummers method. Sci. Rep. 1–7 (2016). https://doi.org/10.1038/srep36143

  31. B. Kartick, S.K. Srivastava, I. Srivastava, Green synthesis of graphene. J. Nanosci. Nanotechnol. 13, 4320–4324 (2013). https://doi.org/10.1166/jnn.2013.7461

    Article  CAS  Google Scholar 

  32. P. Chamoli, R. Sharma, M.K. Das, K.K. Kar, Mangifera indica, Ficus religiosa and Polyalthia longifolia leaf extract-assisted green synthesis of graphene for transparent highly conductive film. RSC Adv. 6, 96355–96366 (2016). https://doi.org/10.1039/c6ra19111h

    Article  CAS  Google Scholar 

  33. F. Tavakoli, M. Salavati-niasari, F. Mohandes, Green synthesis and characterization of graphene nanosheets. Mater. Res. Bull. 63, 51–57 (2015). https://doi.org/10.1016/j.materresbull.2014.11.045

    Article  CAS  Google Scholar 

  34. P. Chamoli, T. Srivastava, A. Tyagi, K.K. Raina, K.K. Kar, Urea and cow urine-based green approach to fabricate graphene-based transparent conductive films with high conductivity and transparency. Mater. Chem. Phys. 242, 122465 (2020). https://doi.org/10.1016/j.matchemphys.2019.122465

    Article  CAS  Google Scholar 

  35. K.X. Sheng, Y.X. Xu, C. Li, G.Q. Shi, High-performance self-assembled graphene hydrogels prepared by chemical reduction of graphene oxide. New Carbon Mater. 26, 9–15 (2011). https://doi.org/10.1016/S1872-5805(11)60062-0

    Article  CAS  Google Scholar 

  36. W. Gao, L.B. Alemany, L. Ci, P.M. Ajayan, New insights into the structure and reduction of graphite oxide. Nat. Chem. 1, 403–408 (2009). https://doi.org/10.1038/nchem.281

    Article  CAS  Google Scholar 

  37. Y. Chen, X. Zhang, D. Zhang, P. Yu, Y. Ma, High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes. Carbon 49, 573–580 (2011). https://doi.org/10.1016/j.carbon.2010.09.060

    Article  CAS  Google Scholar 

  38. P. Su, H.L. Guo, L. Tian, S.K. Ning, An efficient method of producing stable graphene suspensions with less toxicity using dimethyl ketoxime. Carbon 50, 5351–5358 (2012). https://doi.org/10.1016/j.carbon.2012.07.001

    Article  CAS  Google Scholar 

  39. A.C. Ferrari, F. Bonaccorso, V. Fal’ko, K.S. Novoselov, S. Roche, P. Bøggild, S. Borini, F.H.L. Koppens, V. Palermo, N. Pugno, J.A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J.N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G.F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A.N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G.M. Williams, B. Hee Hong, J.H. Ahn, J. Min Kim, H. Zirath, B.J. Van Wees, H. Van Der Zant, L. Occhipinti, A. Di Matteo, I.A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S.R.T. Neil, Q. Tannock, T. Löfwander, J. Kinaret, Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale. 7, 4598–4810 (2015). https://doi.org/10.1039/c4nr01600a

  40. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009). https://doi.org/10.1126/science.1171245

    Article  CAS  Google Scholar 

  41. R. Muñoz, C. Gómez-Aleixandre, Review of CVD synthesis of graphene. Chem. Vap. Deposition 19, 297–322 (2013). https://doi.org/10.1002/cvde.201300051

    Article  CAS  Google Scholar 

  42. J. Robinson, X. Weng, K. Trumbull, R. Cavalero, M. Wetherington, E. Frantz, M. LaBella, Z. Hughes, M. Fanton, D. Snyder, Nucleation of epitaxial graphene on SiC(0001). ACS Nano 4, 153–158 (2010). https://doi.org/10.1021/nn901248j

    Article  CAS  Google Scholar 

  43. N. Mishra, J. Boeckl, N. Motta, F. Iacopi, Graphene growth on silicon carbide: a review. Phys. Status Solidi (A) Appl. Mater. Sci. 213, 2277–2289 (2016). https://doi.org/10.1002/pssa.201600091

  44. G.G. Jernigan, B.L. VanMil, J.L. Tedesco, J.G. Tischler, E.R. Glaser, A. Davidson, P.M. Campbell, D.K. Gaskill, Comparison of epitaxial graphene on si-face and C-face 4H SiC formed by ultrahigh vacuum and RF furnace production. Nano Lett. 9, 2605–2609 (2009). https://doi.org/10.1021/nl900803z

    Article  CAS  Google Scholar 

  45. N.M.S. Hidayah, W. Liu, C. Lai, N.Z. Noriman, Comparison on graphite , graphene oxide and reduced graphene oxide : synthesis and characterization. 150002 (2017). https://doi.org/10.1063/1.5005764

  46. O.C. Compton, S.T. Nguyen, Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6, 711–723 (2010). https://doi.org/10.1002/smll.200901934

    Article  CAS  Google Scholar 

  47. G. Eda, M. Chhowalla, Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv. Mater. 22, 2392–2415 (2010). https://doi.org/10.1002/adma.200903689

    Article  CAS  Google Scholar 

  48. M. Iliut, A.M. Gabudean, C. Leordean, T. Simon, C.M. Teodorescu, S. Astilean, Riboflavin enhanced fluorescence of highly reduced graphene oxide. Chem. Phys. Lett. 586, 127–131 (2013). https://doi.org/10.1016/j.cplett.2013.09.032

    Article  CAS  Google Scholar 

  49. Y.U. Shang, D. Zhang, Y. Liu, C. Guo, Preliminary comparison of different reduction methods of graphene oxide. Bull. Mater. Sci. 38, 7–12 (2015). https://doi.org/10.1007/s12034-014-0794-7

    Article  CAS  Google Scholar 

  50. N. Kumari Jangid, S. Jadoun, N. Kaur, A review on high-throughput synthesis, deposition of thin films and properties of polyaniline. Euro. Polym. J. 125, 109485 (2020). https://doi.org/10.1016/j.eurpolymj.2020.109485

  51. H. Huang, R. Chen, S. Yang, L. Li, Y. Liu, J. Huang, Facile fabrication of MnO2-embedded 3-D porous polyaniline composite hydrogel for supercapacitor electrode with high loading. High Perform. Polym. 32, 286–295 (2020). https://doi.org/10.1177/0954008319860893

    Article  CAS  Google Scholar 

  52. T. Das, B. Verma, Synthesis of polymer composite based on polyaniline-acetylene black-copper ferrite for supercapacitor electrodes. Polymer 168 (2019). https://doi.org/10.1016/j.polymer.2019.01.058

  53. L.Z. Fan, J. Maier, High-performance polypyrrole electrode materials for redox supercapacitors. Electrochem. Commun. 8, 937–940 (2006). https://doi.org/10.1016/j.elecom.2006.03.035

    Article  CAS  Google Scholar 

  54. Y. Huang, H. Li, Z. Wang, M. Zhu, Z. Pei, Q. Xue, Y. Huang, C. Zhi, Nanostructured polypyrrole as a flexible electrode material of supercapacitor. Nano Energy 22, 422–438 (2016). https://doi.org/10.1016/j.nanoen.2016.02.047

    Article  CAS  Google Scholar 

  55. S. Lee, M.S. Cho, H. Lee, J. Do Nam, Y. Lee, A facile synthetic route for well defined multilayer films of graphene and PEDOT via an electrochemical method. J. Mater. Chem. 22, 1899–1903 (2012). https://doi.org/10.1039/c1jm13739e

  56. G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012). https://doi.org/10.1039/c1cs15060j

    Article  CAS  Google Scholar 

  57. C. An, Y. Zhang, H. Guo, Y. Wang, Metal oxide-based supercapacitors: progress and prospectives, Nanoscale. Advances 1, 4644–4658 (2019). https://doi.org/10.1039/c9na00543a

    Article  CAS  Google Scholar 

  58. S. Zhang, L. Sui, H. Dong, W. He, L. Dong, L. Yu, High-performance supercapacitor of graphene quantum dots with uniform sizes. ACS Appl. Mater. Interfaces. 10, 12983–12991 (2018). https://doi.org/10.1021/acsami.8b00323

    Article  CAS  Google Scholar 

  59. W. Fan, Y.Y. Xia, W.W. Tjiu, P.K. Pallathadka, C. He, T. Liu, Nitrogen-doped graphene hollow nanospheres as novel electrode materials for supercapacitor applications. J. Power Sources 243, 973–981 (2013). https://doi.org/10.1016/j.jpowsour.2013.05.184

    Article  CAS  Google Scholar 

  60. Z. Yan, Z. Gao, Z. Zhang, C. Dai, W. Wei, P.K. Shen, Graphene nanosphere as advanced electrode material to promote high performance symmetrical supercapacitor. Small 17, 1–12 (2021). https://doi.org/10.1002/smll.202007915

    Article  CAS  Google Scholar 

  61. Y. Saito, M. Ashizawa, H. Matsumoto, Mesoporous hydrated graphene nanoribbon electrodes for efficient supercapacitors: effect of nanoribbon dispersion on pore structure. Bull. Chem. Soc. Jpn. 93, 1268–1274 (2020). https://doi.org/10.1246/BCSJ.20200161

    Article  CAS  Google Scholar 

  62. C. Zhou, M. Hong, Y. Yang, C. Yang, N. Hu, L. Zhang, Z. Yang, Y. Zhang, Laser-induced bi-metal sulfide/graphene nanoribbon hybrid frameworks for high-performance all-in-one fiber supercapacitors. J. Power Sources 438, 227044 (2019). https://doi.org/10.1016/j.jpowsour.2019.227044

    Article  CAS  Google Scholar 

  63. S.K. Ujjain, P. Ahuja, R.K. Sharma, Graphene nanoribbon wrapped cobalt manganite nanocubes for high performance all-solid-state flexible supercapacitors. J. Mater. Chem. A 3, 9925–9931 (2015). https://doi.org/10.1039/c5ta00653h

    Article  CAS  Google Scholar 

  64. Y. Ping, Y. Zhang, Y. Gong, B. Cao, Q. Fu, C. Pan, Edge-riched graphene nanoribbon for high capacity electrode materials. Electrochim. Acta 250, 84–90 (2017). https://doi.org/10.1016/j.electacta.2017.08.051

    Article  CAS  Google Scholar 

  65. Y. Li, M. Van Zijll, S. Chiang, N. Pan, KOH modified graphene nanosheets for supercapacitor electrodes. J. Power Sources 196, 6003–6006 (2011). https://doi.org/10.1016/j.jpowsour.2011.02.092

    Article  CAS  Google Scholar 

  66. V. Thirumal, A. Pandurangan, R. Jayavel, R. Ilangovan, Synthesis and characterization of boron doped graphene nanosheets for supercapacitor applications. Synth. Met. 220, 524–532 (2016). https://doi.org/10.1016/j.synthmet.2016.07.011

    Article  CAS  Google Scholar 

  67. Z. Fan, Q. Zhao, T. Li, J. Yan, Y. Ren, J. Feng, T. Wei, Easy synthesis of porous graphene nanosheets and their use in supercapacitors. Carbon 50, 1699–1703 (2012). https://doi.org/10.1016/j.carbon.2011.12.016

    Article  CAS  Google Scholar 

  68. N. Chakrabarty, A. Dey, S. Krishnamurthy, A.K. Chakraborty, CeO2/Ce2O3 quantum dot decorated reduced graphene oxide nanohybrid as electrode for supercapacitor. Appl. Surf. Sci. 536, 147960 (2021). https://doi.org/10.1016/j.apsusc.2020.147960

    Article  CAS  Google Scholar 

  69. S.P. Lee, G.A.M. Ali, H.H. Hegazy, H.N. Lim, K.F. Chong, Optimizing reduced graphene oxide aerogel for a supercapacitor. Energy Fuels 35, 4559–4569 (2021). https://doi.org/10.1021/acs.energyfuels.0c04126

    Article  CAS  Google Scholar 

  70. Y. Zou, Z. Zhang, W. Zhong, W. Yang, Hydrothermal direct synthesis of polyaniline, graphene/polyaniline and N-doped graphene/polyaniline hydrogels for high performance flexible supercapacitors. J. Mater. Chem. A 6, 9245–9256 (2018). https://doi.org/10.1039/c8ta01366g

    Article  CAS  Google Scholar 

  71. Z. Hou, S. Zou, J. Li, Morphology and structure control of amine- functionalized graphene/polyaniline composite for high-performance supercapacitors. J. Alloy. Compd. 827, 154390 (2020). https://doi.org/10.1016/j.jallcom.2020.154390

    Article  CAS  Google Scholar 

  72. S. Jadhav, R.S. Kalubarme, C. Terashima, B.B. Kale, V. Godbole, A. Fujishima, S.W. Gosavi, Manganese dioxide/reduced graphene oxide composite an electrode material for high-performance solid state supercapacitor. Electrochim. Acta 299, 34–44 (2019). https://doi.org/10.1016/j.electacta.2018.12.182

    Article  CAS  Google Scholar 

  73. M. Fu, Q. Zhuang, Z. Zhu, Z. Zhang, W. Chen, Q. Liu, H. Yu, Facile synthesis of V2O5/graphene composites as advanced electrode materials in supercapacitors. J. Alloy. Compd. 862, 158006 (2021). https://doi.org/10.1016/j.jallcom.2020.158006

    Article  CAS  Google Scholar 

  74. L. Liu, Y. Wang, Q. Meng, B. Cao, A novel hierarchical graphene/polyaniline hollow microsphere as electrode material for supercapacitor applications. J. Mater. Sci. 52, 7969–7983 (2017). https://doi.org/10.1007/s10853-017-1000-2

    Article  CAS  Google Scholar 

  75. S.R. Charandabinezhad, H. Asgharzadeh, N. Arsalani, Synthesis and characterization of reduced graphene oxide/magnetite/polyaniline composites as electrode materials for supercapacitors. J. Mater. Sci.: Mater. Electron. 32, 1864–1876 (2021). https://doi.org/10.1007/s10854-020-04955-7

    Article  CAS  Google Scholar 

  76. A. Gupta, S. Sardana, J. Dalal, S. Lather, A.S. Maan, R. Tripathi, R. Punia, K. Singh, A. Ohlan, Nanostructured polyaniline/graphene/Fe2O3 composites hydrogel as a high-performance flexible supercapacitor electrode material. ACS Appl. Energy Mater. 3, 6434–6446 (2020). https://doi.org/10.1021/acsaem.0c00684

    Article  CAS  Google Scholar 

  77. Z. Çıplak, A. Yıldız, N. Yıldız, Green preparation of ternary reduced graphene oxide-au@polyaniline nanocomposite for supercapacitor application. J. Energy Storage 32, 101846 (2020). https://doi.org/10.1016/j.est.2020.101846

    Article  Google Scholar 

  78. Z. Xu, Z. Zhang, H. Yin, S. Hou, H. Lin, J. Zhou, S. Zhuo, Investigation on the role of different conductive polymers in supercapacitors based on a zinc sulfide/reduced graphene oxide/conductive polymer ternary composite electrode. RSC Adv. 10, 3122–3129 (2020). https://doi.org/10.1039/c9ra07842h

    Article  CAS  Google Scholar 

  79. R. Ghanbari, M. Entezar Shabestari, E. Naderi Kalali, Y. Hu, S.R. Ghorbani, Electrochemical performance and complex impedance properties of reduced-graphene oxide/polypyrrole nanofiber nanocomposite. Ionics 27, 1279–1290 (2021). https://doi.org/10.1007/s11581-021-03907-3

  80. H. Zhou, T. Ni, X. Qing, X. Yue, G. Li, Y. Lu, One-step construction of graphene-polypyrrole hydrogels and their superior electrochemical performance. RSC Adv. 4, 4134–4139 (2014). https://doi.org/10.1039/c3ra44647f

    Article  CAS  Google Scholar 

  81. S.Z. Golkhatmi, A. Sedghi, H.N. Miankushki, M. Khalaj, Structural properties and supercapacitive performance evaluation of the nickel oxide/graphene/polypyrrole hybrid ternary nanocomposite in aqueous and organic electrolytes. Energy 214, 118950 (2021). https://doi.org/10.1016/j.energy.2020.118950

    Article  CAS  Google Scholar 

  82. C. Liang, C. Yang, L. Zang, Q. Liu, J. Qiu, Y. Li, W. Zuo, X. Liu, UV-assisted one-step synthesis of ternary graphene/polypyrrole/silver nanocomposites for supercapacitors. Energy Technol. 9, 1–9 (2021). https://doi.org/10.1002/ente.202000966

    Article  CAS  Google Scholar 

  83. J. Jose, S.P. Jose, T. Prasankumar, S. Shaji, S. Pillai, P. B. Sreeja, Emerging ternary nanocomposite of rGO draped palladium oxide/polypyrrole for high performance supercapacitors. J. Alloy. Compd. 855, 157481 (2021). https://doi.org/10.1016/j.jallcom.2020.157481

  84. Q. Xin, Z. Guo, Y. Zang, J. Lin, Graphene aerogel-coated MoO3 nanoparticle/polypyrrole ternary composites for high-performance supercapacitor. J. Mater. Sci.: Mater. Electron. 31, 17110–17119 (2020). https://doi.org/10.1007/s10854-020-04271-0

    Article  CAS  Google Scholar 

  85. S. Abraham, T. Prasankumar, K. Vinoth Kumar, S. Zh Karazhanov, S. Jose, Novel lead dioxide intercalated polypyrrole/graphene oxide ternary composite for high throughput supercapacitors. Mater. Lett. 273, 127943 (2020). https://doi.org/10.1016/j.matlet.2020.127943

  86. Z.S. Wu, W. Ren, D.W. Wang, F. Li, B. Liu, H.M. Cheng, High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4, 5835–5842 (2010). https://doi.org/10.1021/nn101754k

    Article  CAS  Google Scholar 

  87. C. Liu, F. Li, M. Lai-Peng, H.M. Cheng, Advanced materials for energy storage. Adv. Mater. 22, 28–62 (2010). https://doi.org/10.1002/adma.200903328

    Article  CAS  Google Scholar 

  88. X. Huang, Z. Zeng, Z. Fan, J. Liu, H. Zhang, Graphene-based electrodes. Adv. Mater. 24, 5979–6004 (2012). https://doi.org/10.1002/adma.201201587

    Article  CAS  Google Scholar 

  89. M. Ashraf, S.S. Shah, I. Khan, M.A. Aziz, N. Ullah, M. Khan, S.F. Adil, Z. Liaqat, M. Usman, W. Tremel, M.N. Tahir, A High-Performance asymmetric supercapacitor based on tungsten oxide nanoplates and highly reduced graphene oxide electrodes. Chem. Eur. J. 27, 6973–6984 (2021). https://doi.org/10.1002/chem.202005156

    Article  CAS  Google Scholar 

  90. A. Karimi, I. Kazeminezhad, L. Naderi, S. Shahrokhian, Construction of a ternary nanocomposite, polypyrrole/Fe-Co sulfide-reduced graphene oxide/nickel foam, as a novel binder-free electrode for high-performance asymmetric supercapacitors. J. Phys. Chem. C 124, 4393–4407 (2020). https://doi.org/10.1021/acs.jpcc.9b11010

    Article  CAS  Google Scholar 

  91. C. Huang, C. Hao, W. Zheng, S. Zhou, L. Yang, X. Wang, C. Jiang, L. Zhu, Synthesis of polyaniline/nickel oxide/sulfonated graphene ternary composite for all-solid-state asymmetric supercapacitor. Appl. Surf. Sci. 505, 144589 (2020). https://doi.org/10.1016/j.apsusc.2019.144589

    Article  CAS  Google Scholar 

  92. D.J. Tarimo, K.O. Oyedotun, A.A. Mirghni, N.F. Sylla, N. Manyala, High energy and excellent stability asymmetric supercapacitor derived from sulphur-reduced graphene oxide/manganese dioxide composite and activated carbon from peanut shell. Electrochim. Acta 353, 136498 (2020). https://doi.org/10.1016/j.electacta.2020.136498

    Article  CAS  Google Scholar 

  93. L. Liu, A. Liu, Y. Xu, H. Yu, F. Yang, J. Wang, Z. Zeng, S. Deng, Agglomerated nickel-cobalt layered double hydroxide nanosheets on reduced graphene oxide clusters as efficient asymmetric supercapacitor electrodes. J. Mater. Res. 35, 1205–1213 (2020). https://doi.org/10.1557/jmr.2020.39

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhawna Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, S., Verma, B. (2022). Graphene-Based Nanomaterial for Supercapacitor Application. In: Thomas, S., Gueye, A.B., Gupta, R.K. (eds) Nanostructured Materials for Supercapacitors. Advances in Material Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-99302-3_11

Download citation

Publish with us

Policies and ethics