Skip to main content

Mesh2Measure: A Novel Body Dimensions Measurement Based on 3D Human Model

  • Conference paper
  • First Online:
Intelligent Technologies for Interactive Entertainment (INTETAIN 2021)

Abstract

In this work, we propose an anthropometric dimensions measurement method based on 3D human model, namely Mesh2Measure. In our method, Human body features in the front and side images are firstly extracted and fused. And then, the feature vectors are attached to the template mesh model SMPL by using Graph-CNN, and 3D coordinates of the model vertices are regressed. Anthropometric dimensions of height, length, width and depth are calculated by scale conversion based on the model vertex coordinates. A novel general dense elliptic model is developed for the curve dimension or closed circumference dimension, which obtains human body dimensions by accumulating the length of elliptic segments with different coefficients. Data experiments are conducted by measuring 100 subjects. Experimental results show that our Mesh2Measure model can measure 38 main dimensions of human body in 15 s, and more importantly, the accuracy rate is 97.4% compared with the ground truth dimensions by manual measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baik, D., Sheng, J., Schlaffer, K., Friedenberg, F.K., Smith, M.S., Ehrlich, A.C.: Abdominal diameter index is a stronger predictor of prevalent Barrett’s esophagus than BMI or waist-to-hip ratio. Diseases Esophagus 30(9), 1–6 (2017)

    Article  Google Scholar 

  2. De Koning, L., Merchant, A.T., Pogue, J., Anand, S. S.: Waist circumference and waist-to-hip ratio as predictors of cardiovascular events: meta-regression analysis of prospective studies. European Heart J. 28(7), 850–856 (2007)

    Google Scholar 

  3. Dunk, N.M., Lalonde, J., Callaghan, J.P.: Implications for the use of postural analysis as a clinical diagnostic tool: reliability of quantifying upright standing spinal postures from photographic. J. Manipulative Physiol. Therapeutics 28(6), 386–392 (2005)

    Google Scholar 

  4. Lemieux, I., Pascot, A., Couillard, C.: Hypertriglyceridemic waist: a marker of the atherogenic metabolic triad (hyperinsulinemia, hyperapo B, small, dense LDL)? Conf. 72nd Sci. Sessions Am. Heart Association (AHA) 102(2), 179–184 (2000)

    Google Scholar 

  5. Chen, Y., Rennie, D., Cormier, Y.F., Dosman, J.: Waist circumference is associated with pulmonary function in normal-weight, overweight, and obese subjects. Am. J. Clinical Nutrit. 85(1), 35–39 (2007)

    Google Scholar 

  6. Scott, I.A.: Thigh circumference and risk of heart disease and premature death. BMJ 339(7723), 704–705 (2009)

    Google Scholar 

  7. Smith, D.A., et al.: Abdominal diameter index: a more powerful anthropometric measure for prevalent coronary heart disease risk in adult males. Diabetes Obesity Metabol. 7(4), 370–380 (2005)

    Google Scholar 

  8. Heitmann, B.L., Frederiksen, P., Lissner, L.: Hip circumference and cardiovascular morbidity and mortality in men and women. Obesity Res. 12(3), 482–487 (2004)

    Google Scholar 

  9. Debette, S., Leone, N., Courbon, D., et al.: Calf circumference is inversely associated with carotid plaques. Stroke 39(11), 2958–2965 (2008)

    Article  Google Scholar 

  10. Park, J.S., Cho, M.H., Ahn, C.W., et al.: The association of insulin resistance and carotid atherosclerosis with thigh and calf circumference in patients with type 2 diabetes. Cardiovasc. Diabetol. 11(1), 62 (2012)

    Google Scholar 

  11. Lu, J.M., Twu, L.J., Wang, M.J.J.: Constructing 3D human model from front and side images. Expert Syst. Appl. 39(5), 5012–5018 (2012)

    Google Scholar 

  12. Wang, X., Liu, B., Dong, Y., et al.: Anthropometric landmarks extraction and dimensions measurement based on ResNet. Symmetry 12(12), 1997 (2020)

    Article  Google Scholar 

  13. Xiao, Q.I., Zhongping, J.I.: Size measurement and fitting based on 3D human body model. College Comput. Sci. Eng. 643(7), 76–83 (2019)

    Google Scholar 

  14. Wang, J., Jin, X.: three dimensional body measurement based on cnns and body silhouette. Master Thesis Zhejiang Univ. (2018)

    Google Scholar 

  15. Xu, L., Wu, X.: Research on the automatic measurement of 3D model of human body. Master Thesis Harbin Inst.Technol. (2019)

    Google Scholar 

  16. Aslam, M., Rajbdad, F., Khattak, S., Azmat, S.: Automatic measurement of anthropometric dimensions using frontal and lateral silhouettes. IET Comput. Vision 11(6), 434–447 (2017)

    Google Scholar 

  17. Loper, M., Mahmood, N., Romero, J., et al.: SMPL: a skinned multi-person linear model. ACM Trans. Graphics 34(6), 248 (2015)

    Article  Google Scholar 

  18. Xiao, Y., Zhang, D.: Design and development of a garment and human body measurement system based on photography. Master Thesis Zhejiang Univ. (2019)

    Google Scholar 

  19. Kanazawa, A., Black, M.J., Jacobs, D. W., Malik, J.: End-to-end recovery of human shape and pose. IEEE Conf. Comput. Vision Pattern Recogn (CVPR) (2018)

    Google Scholar 

  20. Pavlakos, G., Zhu, L., Zhou, X., Daniilidis, K..: Learning to Estimate 3D Human Pose and Shape from a Single Color Image. In: The European Conference on Computer Vision and Pattern Recognition (CVPR), (2018)

    Google Scholar 

  21. Kolotouros, N., Pavlakos, G., Black, M.J., Daniilidis, K.: Learning to reconstruct 3D human pose and shape via model-fitting in the loop. In: International Conference on Computer Vision (ICCV), pp. 2252-2261 (2019)

    Google Scholar 

  22. Gabeur, V., Franco, J.S., Martin, X., Schmid, C., Rogez, G.: Moulding humans: non-parametric 3D human shape estimation from single images. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 2232-2241 (2019)

    Google Scholar 

  23. Choi, H., Moon, G., Lee, K.M.: Pose2Mesh: Graph Convolutional Network for 3D Human Pose and Mesh Recovery from a 2D Human Pose. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 769–787. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_45

    Chapter  Google Scholar 

  24. Kolotouros, N., Pavlakos, G., Black, M.J., Daniilidis, K.: Convolutional mesh regression for single-image human shape reconstruction. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4501–4510 (2019)

    Google Scholar 

  25. Moon, G., Lee, K.M.: I2L-MeshNet: Image-to-Lixel Prediction Network for Accurate 3D Human Pose and Mesh Estimation from a Single RGB Image. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 752–768. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_44

    Chapter  Google Scholar 

  26. Moon, G., Lee, K.M.: Pose2Pose: 3D positional pose-guided 3D rotational pose prediction for expressive 3D human pose and mesh estimation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  27. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 27–30 (2016)

    Google Scholar 

  28. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: The International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  29. GB/T 16160–2017: Anthropometric Definitions and Methods for Garment; Standards Press of China: Beijing (2017)

    Google Scholar 

  30. GB/T 38131–2019: Acquisition Method of Datum Points for Clothing Anthropometry; Standards Press of China: Beijing, China (2019)

    Google Scholar 

  31. Dibra, E., Jain, H., Oztireli, C., Ziegler, R., Gross, M.: HS-nets: estimating human body shape from silhouettes with convolutional neural networks. In: Fourth International Conference on 3D Vision (3DV), pp. 108–117 (2016)

    Google Scholar 

  32. Technicolor, T., Related, S., Technicolor, T.: ImageNet Classification with Deep Convolutional Neural Networks. Curran Associates Inc, NIPS (2012)

    Google Scholar 

  33. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Comput. Sci. (2014)

    Google Scholar 

  34. Szegedy, C., Liu, W., Jia, Y.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (pp. 1-9) (2014)

    Google Scholar 

  35. Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M.J.: Keep It SMPL: Automatic Estimation of 3D Human Pose and Shape from a Single Image. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 561–578. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_34

    Chapter  Google Scholar 

  36. Lassner, C., Romero, J., Kiefel, M., Bogo, F., Black, M.J., Gehler, P.V.: Unite the people: closing the loop between 3D and 2D human representations. In: CVPR (2017)

    Google Scholar 

  37. Omran, M., Lassner, C., Pons-Moll, G., Gehler, P., Schiele, B.: Neural body fitting: unifying deep learning and model based human pose and shape estimation. In: 3DV (2018)

    Google Scholar 

  38. Zhou, X., Zhu, M., Pavlakos, G., Leonardos, S., Derpanis, K.G., Daniilidis, K.: Monocap: monocular human motion capture using a CNN coupled with a geometric prior. PAMI 41(4), 901–914 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant Nos. 61873280, 61873281, 61972416), Taishan Scholarship (tsqn201812029), Major projects of the National Natural Science Foundation of China (Grant No. 41890851), Natural Science Foundation of Shandong Province (No. ZR2019MF012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, T., Zhang, R., Dong, Y., Tao, X., Lu, H., Liu, B. (2022). Mesh2Measure: A Novel Body Dimensions Measurement Based on 3D Human Model. In: Lv, Z., Song, H. (eds) Intelligent Technologies for Interactive Entertainment. INTETAIN 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 429. Springer, Cham. https://doi.org/10.1007/978-3-030-99188-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99188-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99187-6

  • Online ISBN: 978-3-030-99188-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics