Skip to main content

End-to-End Compressive Spectral Classification: A Deep Learning Approach Applied to the Grading of Tahiti Lime

  • Conference paper
  • First Online:
Smart Technologies, Systems and Applications (SmartTech-IC 2021)

Abstract

Compressed sensing (CS) theory enables the reconstruction of spectral images (SI) using a lower number of measurements than the traditional Shannon-Nyquist sampling approach, through compressive spectral imaging (CSI) systems. These CSI systems rely on a dispersive-based optical setup coupled to one or more coded-apertures to capture and compress a spectral scene simultaneously. Afterward, the reconstruction of the underlying scene is obtained through computational algorithms. Then, processing tasks like classification, object detection, or segmentation are performed over the reconstructed images. However, this reconstruction process is computationally expensive, which introduces a time overhead for these tasks. In this paper, spectral classification is directly performed over compressed measurements acquired through an optical architecture following the CS framework. An end-to-end method to optimize both coded-apertures and deep learning model parameters is proposed. This approach has been applied to the grading of Tahiti lime (Citrus latifolia), but can be used for different agricultural materials. In this specific case, the classification accuracy reached 99%. In addition, for the purpose of comparison, our experiments improved up to 7% in classification accuracy over a testing database when the coded-apertures were optimized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Orange Export S.A.S. www.orange-export.com.

References

  1. Nandhini, A., Hemalatha, S., Radha, R., et al.: Web enabled plant disease detection system for agricultural applications using WMSN. Wirel. Person. Commun. 102, 725–740 (2018)

    Google Scholar 

  2. Draganić, A., Orović, I., Stanković, S., Zhang, X., Wang, X.: Compressive sensing approach in the table grape cold chain logistics. In: 2017 6th Mediterranean Conference on Embedded Computing (MECO), pp. 1–4 (2017)

    Google Scholar 

  3. Yang, Y., Qin, X., Ruan, S., Tian, D.: A new compressed sensing model based on median filter with application to reconstruct brain MR images. In: 2018 IEEE 3rd International Conference on Signal and Image Processing (ICSIP), pp. 116–120 (2018)

    Google Scholar 

  4. Mirrashid, A., Beheshti, A.A.: Compressed remote sensing by using deep learning. In: 2018 9th International Symposium on Telecommunications (IST), pp. 549–552 (2018)

    Google Scholar 

  5. Zhang, Y., Orfeo, D., Huston, D., Xia, T.: Compressive sensing based software defined GPR for subsurface imaging. In: 2021 IEEE Radar Conference (RadarConf21), pp. 1–6 (2021)

    Google Scholar 

  6. TE-Cooled Fluorescence Spectrometer|Edmund Optics. https://www.edmundoptics.com/p/te-cooled-fluorescence-spectrometer/28866/

  7. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  8. Duarte, M.F., et al.: Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag. 25(2), 83–91 (2008)

    Article  MathSciNet  Google Scholar 

  9. Gehm, M.E., John, R., Brady, D.J., Willett, R.M., Schulz, T.J.: Single-shot compressive spectral imaging with a dual-disperser architecture. Opt. Exp. 15(21), 14013 (2007)

    Google Scholar 

  10. Wagadarikar, A., John, R., Willett, B., Brady, D.: Single disperser design for coded aperture snapshot spectral imaging. Appl. Opt. 47(10) (2008)

    Google Scholar 

  11. Lin, X., Liu, Y., Wu, J., Dai, Q.: Spatial-spectral encoded compressive hyperspectral imaging. ACM Trans. Graph. 33(6) (2014)

    Google Scholar 

  12. Wang, L., Xiong, Z., Shi, G., Wu, F., Zeng, W.: Adaptive nonlocal sparse representation for dual-camera compressive hyperspectral imaging. IEEE Trans. Pattern Anal. Mach. Intell. 39(10), 2104–2111 (2017)

    Article  Google Scholar 

  13. Xingyi, C., Yujie, Z., Rui, O.: Block sparse signals recovery algorithm for distributed compressed sensing reconstruction. J. Inf. Process. Syst. 15(2), 410–421 (2019)

    Google Scholar 

  14. Figueiredo, M.A., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1(4), 586–597 (2007)

    Article  Google Scholar 

  15. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  Google Scholar 

  16. Blumensath, T., Davies, M.E.: Iterative hard thresholding for compressed sensing. Appl. Comput. Harmon. Anal. 27(3), 265–274 (2009)

    Article  MathSciNet  Google Scholar 

  17. Zhao, C., Zhang, J., Wang, R., Gao, W.: Cream: CNN-regularized ADMM framework for compressive-sensed image reconstruction. IEEE Access 6, 76 838–76 853 (2018)

    Google Scholar 

  18. Davenport, M.A., Boufounos, P.T., Wakin, M.B., Baraniuk, R.G.: Signal processing with compressive measurements. IEEE J. Sel. Top. Signal Process. 4(2), 445–460 (2010)

    Article  Google Scholar 

  19. Kulkarni, K., Lohit, S., Turaga, P., Kerviche, R., Ashok, A.: ReconNet: Non-iterative reconstruction of images from compressively sensed measurements. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2016-December, pp. 449–458 (2016)

    Google Scholar 

  20. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010). http://yann.lecun.com/exdb/mnist/

  21. Bacca, J., Galvis, L., Arguello, H.: Coupled deep learning coded aperture design for compressive image classification. Opt. Express 28(6), 8528–8540. http://www.opticsexpress.org/abstract.cfm?URI=oe-28-6-8528

  22. Krizhevsky, A., Nair, V., Hinton, G.: Cifar-10 (Canadian Institute for Advanced Research). [Online]. http://www.cs.toronto.edu/~kriz/cifar.html

  23. Galvis, L., Mojica, E., Arguello, H., Arce, G.R.: Shifting colored coded aperture design for spectral imaging. Appl. Opt. 58(7), B28–B38 (2019). http://www.osapublishing.org/ao/abstract.cfm?URI=ao-58-7-B28

  24. Sobral, A., Vacavant, A.: A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos. Comput. Vis. Image Underst. 122, 4–21 (2014). https://www.sciencedirect.com/science/article/pii/S1077314213002361

  25. Neubert, P., Protzel, P.: Compact watershed and preemptive SLIC: on improving trade-offs of superpixel segmentation algorithms. In: 2014 22nd International Conference on Pattern Recognition, pp. 996–1001 (2014)

    Google Scholar 

  26. Higham, C.F., Murray-Smith, R., Padgett, M.J., Edgar, M.P.: Deep learning for real-time single-pixel video. Sci. Rep. 8(1), 2369 (2018). https://doi.org/10.1038/s41598-018-20521-y

  27. Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw. 106, 249–259 (2018). https://www.sciencedirect.com/science/article/pii/S0893608018302107

  28. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035. Curran Associates Inc. (2019), http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

  29. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J., Bottou, C.L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25. Curran Associates Inc. (2012). https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

  30. He, K., Zhang, K., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR, abs/1512.03385 (2015) http://arxiv.org/abs/1512.03385

  31. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. CoRR, abs/1708.07747 (2017). http://arxiv.org/abs/1708.07747

Download references

Acknowledgment

The authors acknowledge the support by the Sistema general de regalías de CTeI - Colombia (BPIN 2020000100415, “Desarrollo de un sistema óptico - computacional para estimar el contenido de carbono orgánico de suelos agrícolas a través de imágenes espectrales e inteligencia artificial en cultivos cítricos de Santander." with UIS code 8933). Laura Galvis was supported by the postdoctoral program of the VIE-UIS.

We also acknowledge Orange Export S.A.S. for supplying the classified lime samples studied in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Silva-Maldonado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Silva-Maldonado, M., Galvis, L., Arguello, H. (2022). End-to-End Compressive Spectral Classification: A Deep Learning Approach Applied to the Grading of Tahiti Lime. In: Narváez, F.R., Proaño, J., Morillo, P., Vallejo, D., González Montoya, D., Díaz, G.M. (eds) Smart Technologies, Systems and Applications. SmartTech-IC 2021. Communications in Computer and Information Science, vol 1532. Springer, Cham. https://doi.org/10.1007/978-3-030-99170-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99170-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99169-2

  • Online ISBN: 978-3-030-99170-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics