Skip to main content

Using HMM to Model Neural Dynamics and Decode Useful Signals for Neuroprosthetic Control

  • Chapter
  • First Online:
Hidden Markov Models and Applications

Abstract

A central aim of modern neuroscience is to unravel how the various brain areas coordinate their activity across time and how they control behaviour. In this chapter, we first provide the rationale for the application of mathematical methods that analyse neural signals with a population approach. Among these techniques, Hidden Markov Models (HMMs) have been extensively applied. We then presented the key concepts of HMMs and the main problems during their application. Using neural data recorded from three distinct sectors in the monkey parietal cortex during an arm movement task, we show how HMMs can be used both to define neural dynamics and the flow of information at the network level, but also to decode relevant task parameters from neural activity in order to control finite state brain–machine interfaces (BMIs). We found that the HMM state transitions were in accordance with a functional gradient in the parietal cortex and that they carry reliable information about target position and behavioural phases. Finally, we provide a brief review of the literature on HMMs in the field and an overview of other approaches that can model time series.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.S. Churchland, T.J. Sejnowski, Perspectives on cognitive neuroscience. Science 242(4879), 741–745 (1988)

    Article  Google Scholar 

  2. S.R. Cajal, Estructura del cerebelo. Gac. Med. Catalana (11), 449–457 (1888)

    Google Scholar 

  3. S.R. Cajal, Estructura de los centros nerviosos de las aves. Rev. Trim. Histol. Norm. Patol. 1, 1–10 (1888)

    Google Scholar 

  4. S.R. Cajal, Textura del sistema nervioso del hombre y de los vertebrados RAMÓN Y CAJAL, Santiago Editore. (Nicolas Moya, Madrid, 1904)

    Google Scholar 

  5. M.S.A. Graziano, T.N. Aflalo, Mapping behavioral repertoire onto the cortex. Neuron 56(2), 239–251 (2007)

    Article  Google Scholar 

  6. M. Omrani, M.T. Kaufman, N.G. Hatsopoulos, P.D. Cheney, Perspectives on classical controversies about the motor cortex. J. Neurophysiol. 118(3), 1828–1848 (2017)

    Article  Google Scholar 

  7. H. Tanaka, Modeling the motor cortex: Optimality, recurrent neural networks, and spatial dynamics. Neurosci. Res. 104, 64–71 (2016)

    Article  Google Scholar 

  8. E. Fetz, Are movement parameters recognizably coded in the activity of single neurons? Behav. Brain Sci. 15(4), 679–690 (1992)

    Google Scholar 

  9. R. Yuste, From the neuron doctrine to neural networks. Nat. Rev. Neurosci. 16(8), 487–497 (2015)

    Article  Google Scholar 

  10. M.M. Churchland, J.P. Cunningham, M.T. Kaufman, J.D. Foster, P. Nuyujukian, S.I. Ryu, K.V. Shenoy, Neural population dynamics during reaching. Nature 487(7405), 51–56 (2012)

    Article  Google Scholar 

  11. J.P. Cunningham, B.M. Yu, Dimensionality reduction for large-scale neural recordings. Nat. Neurosci. 17(11), 1500–1509 (2014)

    Article  Google Scholar 

  12. M.T. Kaufman, M.M. Churchland, S.I. Ryu, K.V. Shenoy, Cortical activity in the null space: Permitting preparation without movement. Nat. Neurosci. 17(3), 440–448 (2014)

    Article  Google Scholar 

  13. V. Mante, D. Sussillo, K.V. Shenoy, W.T. Newsome, Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503(7474), 78–84 (2013)

    Article  Google Scholar 

  14. M.G. Stokes, M. Kusunoki, N. Sigala, H. Nili, D. Gaffan, J. Duncan, Dynamic coding for cognitive control in prefrontal cortex. Neuron 78(2), 364–375 (2013)

    Article  Google Scholar 

  15. M. Abeles, H. Bergman, I. Gat, I. Meilijson, E. Seidemann, N. Tishby, E. Vaadia, Cortical activity flips among quasi-stationary states. Proc. Natl. Acad. Sci. U. S. A. 92(19), 8616–8620 (1995)

    Article  Google Scholar 

  16. K.A. Mazurek, M.H. Schieber, Mirror neurons precede non-mirror neurons during action execution. J. Neurophysiol. 122, 2630–2635 (2019)

    Article  Google Scholar 

  17. K.A. Mazurek, A.G. Rouse, M.H. Schieber, Mirror neuron populations represent sequences of behavioral epochs during both execution and observation. J. Neurosci. 38, 4441–4455 (2018)

    Article  Google Scholar 

  18. N. Kadmon Harpaz, D. Ungarish, N.G. Hatsopoulos, T. Flash, Movement decomposition in the primary motor cortex. Cereb. Cortex 29, 1619–1633 (2019)

    Article  Google Scholar 

  19. C. Kemere, G. Santhanam, B.M. Yu, A. Afshar, S.I. Ryu, T.H. Meng, K.V. Shenoy, Detecting neural-state transitions using hidden Markov models for motor cortical prostheses. J. Neurophysiol. 100(4), 2441–2452 (2008)

    Article  Google Scholar 

  20. J.C. Kao, P. Nuyujukian, S.I. Ryu, K.V. Shenoy, A high-performance neural prosthesis incorporating discrete state selection with hidden Markov models. I.E.E.E. Trans. Biomed. Eng. 64(4), 935–945 (2017)

    Google Scholar 

  21. L.R. Rabiner, A tutorial on hidden markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  22. S. Diomedi, F.E. Vaccari, C. Galletti, K. Hadjidimitrakis, P. Fattori, Motor-like neural dynamics in two parietal areas during arm reaching. Prog. Neurobiol. 1, 102116 (2021)

    Article  Google Scholar 

  23. K. Maboudi, E. Ackermann, L.W. de Jong, B.E. Pfeiffer, D. Foster, K. Diba, C. Kemere, Uncovering temporal structure in hippocampal output patterns. elife 7, e34467 (2018)

    Article  Google Scholar 

  24. M. Tadayon, G. Pottie, Comparative analysis of the hidden markov model and LSTM: a simulative approach. arXiv: Learning (2020)

    Google Scholar 

  25. A. Bollimunta, D. Totten, J. Ditterich, Neural dynamics of choice: Single-trial analysis of decision-related activity in parietal cortex. J. Neurosci. 32(37), 12684–12701 (2012)

    Article  Google Scholar 

  26. G. Schwarz, Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  27. H. Akaike, Information theory and the maximum likelihood principle, in 2nd International Symposium on Information Theory, ed. by B. N. Petrov, F. Csäki, (Akademiai Ki à do, Budapest, 1973)

    Google Scholar 

  28. N. Dridi, M. Hadzagic, Akaike and Bayesian information criteria for hidden Markov models. IEEE Sig. Process. Lett. 26, 302–306 (2019)

    Article  Google Scholar 

  29. W. Zucchini, I.L. MacDonald, Hidden Markov Models for Time Series: An Introduction Using R, 1st edn. (Chapman and Hall/CRC, 2009)

    Book  MATH  Google Scholar 

  30. M. Bicego, V. Murino, M.A.T. Figueiredo, A sequential pruning strategy for the selection of the number of states in hidden Markov models. Pattern Recogn. Lett. 24(9–10), 1395–1407 (2003)

    Article  MATH  Google Scholar 

  31. B. Roblès, M. Avila, F. Duculty, P. Vrignat, S. Begot, F. Kratz, Methods to choose the best Hidden Markov Model topology for improving maintenance policy. MOSIM’12 9th International Conference of Modeling, Optimization and Simulation (Bordeaux, 2012), p. 1. ffhal-00706781f

    Google Scholar 

  32. P. Smyth, Model selection for probabilistic clustering using cross-validated likelihood. Stat. Comput. 10, 63–72 (2000)

    Article  Google Scholar 

  33. J.I. Figueroa-Angulo, J. Savage, E. Bribiesca, B. Escalante, L. Sucar, Compound hidden markov model for activity labelling. Int. J. Intell. Syst. 05, 177–195 (2015)

    Google Scholar 

  34. S. Gagnon, J. Rouat, Moving toward high precision dynamical modelling in hidden Markov models. arXiv preprint arXiv:1607.00359 (2016)

    Google Scholar 

  35. M. Gamberini, L. Passarelli, P. Fattori, C. Galletti, Structural connectivity and functional properties of the macaque superior parietal lobule. Brain Struct. Funct. 225(4), 1349–1367 (2020)

    Article  Google Scholar 

  36. K. Hadjidimitrakis, S. Bakola, Y.T. Wong, M.A. Hagan, Mixed spatial and movement representations in the primate posterior parietal cortex. Front. Neural Circ. (2019)

    Google Scholar 

  37. L. Passarelli, M. Gamberini, P. Fattori, The superior parietal lobule of primates: A sensory-motor hub for interaction with the environment. J. Integr. Neurosci. 20(1), 157–171 (2021)

    Article  Google Scholar 

  38. M. De Vitis, R. Breveglieri, K. Hadjidimitrakis, W. Vanduffel, C. Galletti, P. Fattori, The neglected medial part of macaque area PE: Segregated processing of reach depth and direction. Brain Struct. Funct. 224(7), 2537–2557 (2019)

    Article  Google Scholar 

  39. K. Hadjidimitrakis, G. Dal Bo’, R. Breveglieri, C. Galletti, P. Fattori, Overlapping representations for reach depth and direction in caudal superior parietal lobule of macaques. J. Neurophysiol. 114(4), 2340–2352 (2015)

    Article  Google Scholar 

  40. K. Hadjidimitrakis, F. Bertozzi, R. Breveglieri, C. Galletti, P. Fattori, Temporal stability of reference frames in monkey area V6A during a reaching task in 3D space. Front. Neural Circ. 222(4), 1959–1970 (2017)

    Google Scholar 

  41. R. Breveglieri, C. Galletti, G. Dal Bò, K. Hadjidimitrakis, P. Fattori, Multiple aspects of neural activity during reaching preparation in the medial posterior parietal area V6A. J. Cogn. Neurosci. 26(4), 878–895 (2014)

    Article  Google Scholar 

  42. P. Fattori, D.F. Kutz, R. Breveglieri, N. Marzocchi, C. Galletti, Spatial tuning of reaching activity in the medial parieto-occipital cortex (area V6A) of macaque monkey. Eur. J. Neurosci. 22(4), 956–972 (2005)

    Article  Google Scholar 

  43. S. Ferraina, A. Battaglia-Mayer, A. Genovesio, B. Marconi, P. Onorati, R. Caminiti, Early coding of visuomanual coordination during reaching in parietal area PEc. J. Neurophysiol. 85(1), 462–467 (2001)

    Article  Google Scholar 

  44. L.M. Jones, A. Fontanini, B.F. Sadacca, P. Miller, D.B. Katz, Natural stimuli evoke dynamic sequences of states in sensory cortical ensembles. Proc. Natl. Acad. Sci. U. S. A. 104(47), 18772–18777 (2007)

    Article  Google Scholar 

  45. W.P. Medendorp, T. Heed, State estimation in posterior parietal cortex: Distinct poles of environmental and bodily states. Prog. Neurobiol. 183, 101691 (2019)

    Article  Google Scholar 

  46. G. di Pellegrino, L. Fadiga, L. Fogassi, V. Gallese, G. Rizzolatti, Understanding motor events: A neurophysiological study. Exp. Brain Res. 91(1), 176–180 (1992)

    Article  Google Scholar 

  47. R. Levi, R. Varona, Y.I. Arshavsky, M.I. Rabinovich, A.I. Selverston, The role of sensory network dynamics in generating a motor program. J. Neurosci. 25, 9807–9815 (2005)

    Article  Google Scholar 

  48. O. Mazor, G. Laurent, Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons. Neuron 48, 661–673 (2005)

    Article  Google Scholar 

  49. M.A.L. Nicolelis, L.A. Baccala, R.C.S. Lin, J.K. Chapin, Sensorimotor encoding by synchronous neural ensemble activity at multiple levels of the somatosensory system. Science 268(5215), 1353–1358 (1995)

    Article  Google Scholar 

  50. D. Kobak, W. Brendel, C. Constantinidis, C.E. Feierstein, A. Kepecs, Z.F. Mainen, X.L. Qi, R. Romo, N. Uchida, C.K. Machens, Demixed principal component analysis of neural population data. elife 5, e10989 (2016)

    Article  Google Scholar 

  51. B.M. Broome, V. Jayaraman, G. Laurent, Encoding and decoding of overlapping odor sequences. Neuron 51, 467–482 (2006)

    Article  Google Scholar 

  52. S.L. Brown, J. Joseph, M. Stopfer, Encoding a temporally structured stimulus with a temporally structured neural representation. Nat. Neurosci. 8, 1568–1576 (2005)

    Article  Google Scholar 

  53. S.T. Roweis, L.K. Saul, Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  54. M. Stopfer, V. Jayaraman, G. Laurent, Intensity versus identity coding in an olfactory system. Neuron 39, 991–1004 (2003)

    Article  Google Scholar 

  55. B.M. Yu, J.P. Cunningham, G. Santhanam, S.I. Ryu, K.V. Shenoy, M. Sahani, Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity. J. Neurophysiol. 102(1), 614–635 (2009)

    Article  Google Scholar 

  56. J.H. Macke, L. Buesing, J.P. Cunningham, B.M. Yu, K.V. Shenoy, M. Sahani, Empirical models of spiking in neural populations. Adv. Neural Inf. Process. Syst. 24, 1350–1358 (2011)

    Google Scholar 

  57. D. Pfau, E.A. Pnevmatikakis, L. Paninski, Robust learning of low-dimensional dynamics from large neural ensembles. Adv. Neural Inf. Process. Syst. 26, 2391–2399 (2013)

    Google Scholar 

  58. J.I. Glaser, M.R. Whiteway, J. Cunningham, L. Paninski, S.W. Linderman, Recurrent switching dynamical systems models for multiple interacting neural populations. bioRxiv (2020)

    Google Scholar 

  59. B. Petreska, B.M. Yu, J.P. Cunningham, G. Santhanam, S.I. Ryu, K.V. Shenoy, M. Sahani, Dynamical segmentation of single trials from population neural data, in Advances in Neural Information Processing Systems, (2011), pp. 756–764

    Google Scholar 

  60. J. Taghia, W. Cai, S. Ryali, J. Kochalka, J. Nicholas, T. Chen, V. Menon, Uncovering hidden brain state dynamics that regulate performance and decision-making during cognition. Nat. Commun. 9(1), 2505 (2018)

    Article  Google Scholar 

  61. Z. Wei, H. Inagaki, N. Li, K. Svoboda, S. Druckmann, An orderly single-trial organization of population dynamics in premotor cortex predicts behavioral variability. Nat. Commun. 10(1), 216 (2019)

    Article  Google Scholar 

  62. M. Filippini, A.P. Morris, R. Breveglieri, K. Hadjidimitrakis, P. Fattori, Decoding of standard and non-standard visuomotor associations from parietal cortex. J. Neural Eng. 17(4), 046027 (2020)

    Article  Google Scholar 

  63. H. Scherberger, M.R. Jarvis, R.A. Andersen, Cortical local field potential encodes movement intentions in the posterior parietal cortex. Neuron 46(2), 347–354 (2005)

    Article  Google Scholar 

  64. K.V. Shenoy, D. Meeker, S. Cao, S.A. Kureshi, B. Pesaran, C.A. Buneo, A.P. Batista, P.P. Mitra, J.W. Burdick, R.A. Andersen, Neural prosthetic control signals from plan activity. Neuroreport 14(4), 591–596 (2003)

    Article  Google Scholar 

  65. S.Z. Yu, Hidden semi-Markov models. Artif. Intell. 174(2), 215–243 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  66. S. Faisan, L. Thoraval, J.P. Armspach, M.N. Metz-Lutz, F. Heitz, Unsupervised learning and mapping of active brain functional MRI signals based on hidden semi-Markov event sequence models. IEEE Trans. Med. Imaging 24(2), 263–276 (2005)

    Article  Google Scholar 

  67. H. Shappell, B.S. Caffo, J.J. Pekar, M.A. Lindquist, Improved state change estimation in dynamic functional connectivity using hidden semi-Markov models. NeuroImage 191, 243–257 (2019)

    Article  Google Scholar 

  68. S. Chakravarty, T.E. Baum, J. An, P. Kahali, E.N. Brown, A hidden semi-Markov model for estimating burst suppression EEG, in Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, vol. 2019, (2019), pp. 7076–7079

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostas Hadjidimitrakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Diomedi, S., Vaccari, F.E., Hadjidimitrakis, K., Fattori, P. (2022). Using HMM to Model Neural Dynamics and Decode Useful Signals for Neuroprosthetic Control. In: Bouguila, N., Fan, W., Amayri, M. (eds) Hidden Markov Models and Applications. Unsupervised and Semi-Supervised Learning. Springer, Cham. https://doi.org/10.1007/978-3-030-99142-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99142-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99141-8

  • Online ISBN: 978-3-030-99142-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics