Skip to main content

Potentiometric Sensor for the Ion Speciation in the Industrial Waters

  • Conference paper
  • First Online:
Recent Developments in the Field of Non-Destructive Testing, Safety and Materials Science (ICMTNT 2021)

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 433))

  • 191 Accesses

Abstract

The research provides the key concept for construction of new type of the potentiometric sensor to automate the measurement procedure of the ion species in the industrial waters and environmental samples to serve prospective screening purposes. In this work the possibility of automation of determination of ion species in the industrial waters such as the chloride and nitrate ions concentration is considered with help of combined potentiometric sensors. The design of the measuring equipment supposes its installation into flowing system. Measurement of the ion concentration is implemented by the combined sensors with two ion-selective electrodes used as working and reference electrodes. This work studies the possibility to control the ion-selective electrode calibration and the workability by use of the system of electrogeneration of the required ion in the measured medium. This study shows the possibility of developing a potentiometric sensor that has the advantages of high simplicity, designability, stability of potential and can be easily installed on the automated system to monitor the ion species in the industrial waters. The performance of the proposed sensor, such as stability, the effect of stirring and concrete admixtures was investigated. The potentiometric sensor can be used to monitor chloride and nitrate ions in the industrial waters and wastewaters within the 11–3540 and 6.2–6200 mg/dm3 range. Accuracy of the proposed technique is verified by the added-found method. Recovery errors are within the acceptable range (4–22%) for the screening purposes. The results are in good agreement with the classic ionometry method. The proposed potentiometric system is to be constructed taking into account the effect of temperature, the shift of the potential, the effect of stirring and the presence of interfering substances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aleksandrin, A.P., Egorshev, A.A., Katsereva, O.V., Mynin, V.N., Terpugov, G.V.: Purification and regeneration of technological solutions and waste of machine-building factories with application of ceramic membranes. Tyazheloe Mashinostroenie 11, 22–24 (2001)

    Google Scholar 

  2. Porozhnyuk, L.A., Lupandina, N.S., Porozhnyuk. E.V.: Research of mechanisms of copper ions removal out of sewage of machine-building productions by combined reagent based on industrial wastes. Solid State Phenomena 265, 851–855. (2017). doi: https://doi.org/10.4028/www.scientific.net/SSP.265.851.

  3. Ding, B., Wang, J., Tao, S., Ding, Y., Zhang, L., Gao, N., Li, G., Shi, H., Li, W., Ge, S.: Fabrication of multi-functional porous microspheres in a modularfashion for the detection, adsorption, and removal of pollutants in wastewater. J. Colloid. Interface. Sci. 522, 1–9 (2018). https://doi.org/10.1016/j.jcis.2018.03.060

    Article  Google Scholar 

  4. Maksimov, D.B., Zakharov, A.V., Malts, I.E., Khomchenko, O.A., Solovev, E.M.: Production of cathode copper by electric extraction at kola mining and metallurgical company. Tsvetnye. Metally. 10, 65–68 (2013)

    Google Scholar 

  5. Jachuła, J., Kołodyńska, D., Hubicki, Z.: Methylglycinediacetic Acid as a New Complexing Agent for Removal of Heavy Metal Ions from Industrial Wastewater. Solvent Extr. Ion Exch. 30(2), 181–196 (2012). https://doi.org/10.1080/07366299.2011.581088

    Article  Google Scholar 

  6. Seruga, P., Krzywonos, M., Pyżanowska, J., Urbanowska, A., Pawlak-Kruczek, H., Niedźwiecki, L.: Removal of Ammonia from the Municipal Waste Treatment Effluents using Natural Minerals. Molecules 24(20), 3633 (2019). https://doi.org/10.3390/molecules24203633

    Article  Google Scholar 

  7. Shannon, M., Bohn, P.W., Elimelech, M., Georgiadis, J.G., Mariñas, B.J., Mayes, A.: M: Science and technology for water purification in the coming decades. Nature 452(7185), 301–310 (2008). https://doi.org/10.1038/nature06599

    Article  Google Scholar 

  8. Laxmeshwar, L.S., Jadhav, M.S., Akki, J.F., Raikar, P., Kumar, J., Prakash, O., Mahakud, R., Raikar, U.S.: Quantification of chloride and iron in sugar factory effluent using long period fiber grating chemical sensor. Sens. Actuators, B Chem. 258, 850–856 (2018). https://doi.org/10.1016/j.snb.2017.11.139

    Article  Google Scholar 

  9. Tang, W., Ping, J., Fan, K., Wang, Y., Luo, X., Ying, Y., Wu, J., Zhou, Q.: All-solid-state nitrate-selective electrode and its application in drinking water. Electrochim. Acta 81, 186–190 (2012). https://doi.org/10.1016/j.electacta.2012.07.073

    Article  Google Scholar 

  10. Rani, S., Sharma, N., Malik, A.K.: A review on recent applications of high-performance liquid chromatography in metal determination and speciation analysis. Crit. Rev. Anal. Chem. 47(6), 524–537 (2017). https://doi.org/10.1080/10408347.2017.1343659

    Article  Google Scholar 

  11. Kiss, T., Enyedy, E.A., Jakusch, T.: Development of the application of speciation in chemistry. Coord. Chem. Rev. 352, 401–423 (2017). https://doi.org/10.1016/j.ccr.2016.12.016

    Article  Google Scholar 

  12. Alahi, Md.E.E., Mukhopadhyay, S.C., Burkitt, L.: Imprinted polymer coated impedimetric nitrate sensor for real-time water quality monitoring. Sens. Actuators, B Chem. 259, 753–761 (2018). https://doi.org/10.1016/j.snb.2017.12.104

    Article  Google Scholar 

  13. Mahmud, M.A.P., Ejeian, F., Azadi, S., Myers, M., Pejcic, B., Abbassi, R., Razmjou, A., Asadnia, M.: Recent progress in sensing nitrate, nitrite, phosphate, and ammonium in aquatic environment. Chemosphere 259 (2020). https://doi.org/10.1016/j.chemosphere.2020.127492

  14. Vahl, K., Kahlert, H., Scholz, F.: Rapid automatic determination of calcium and magnesium in aqueous solutions by FIA using potentiometric detection. Electroanalysis 22(19), 2172–2178 (2010). https://doi.org/10.1002/elan.201000146

    Article  Google Scholar 

  15. Zolotov, Y.A.: Analytical Chemistry in Russia. Anal. Chem. 88(17), 8348–8354 (2016). https://doi.org/10.1021/acs.analchem.5b04279

    Article  Google Scholar 

  16. Zolotov, Y.A.: Russian Contributions to Analytical Chemistry. Springer International Publishing, Switzerland (2018)

    Book  Google Scholar 

  17. Apyari, V.V., Gorbunova, M.O., Shevchenko, A.V., Furletov, A.A., Volkov, P.A., Garshev, A.V., Dmitrienko, S.G., Zolotov, Y.A.: Towards highly selective detection using metal nanoparticles: A case of silver triangular nanoplates and chlorine. Talanta 176, 406–411 (2018). https://doi.org/10.1016/j.talanta.2017.08.056

    Article  Google Scholar 

  18. Sohail, M., Roland De Marco, Lamb, K., Bakker, E.: Thin layer coulometric determination of nitrate in fresh waters. Analytica. Chimica. Acta. 744, 39–44. (2012). doi: https://doi.org/10.1016/j.aca.2012.07.026

  19. Myers, M., Khir, F.L.M., Podolska, A., Umana-Membreno, G.A., Nener, B., Baker, M., Parish, G.: Nitrate ion detection using AlGaN/GaN heterostructure-based devices without a reference electrode. Sens. Actuators, B Chem. 181, 301–305 (2013). https://doi.org/10.1016/j.snb.2013.02.006

    Article  Google Scholar 

  20. Baciu, A., Manea, F., Pop, A., Pode, R., Schoonman, J.: Simultaneous voltammetric detection of ammonium and nitrite from groundwater at silver-electrodecorated carbon nanotube electrode. Process Saf. Environ. Prot. 108, 18–25 (2017). https://doi.org/10.1016/j.psep.2016.05.006

    Article  Google Scholar 

  21. Yang, L., Wang, J., Wang, S., Liao, Y., Li, Y.: A new method to improve the sensitivity of nitrate concentration measurement in seawater based on dispersion turning point. Optik. 205,(2020). https://doi.org/10.1016/j.ijleo.2020.164202

  22. Scholz, F.: Electroanalytical methods. Guide to Experiments and Applications. Springer Berlin Heidelberg, Berlin (2010)

    Google Scholar 

  23. Mikhelson, K.N.: Ion-Selective Electrodes. Springer International Publishing, Switzerland (2013). doi: https://doi.org/10.1007/978-3-642-36886-8_8

  24. Crespo, G.A.: Recent advances in ion-selective membrane electrodes for in situ environmental water analysis. Electrochim. Acta. 245, 1023–1034 (2017). https://doi.org/10.1016/j.electacta.2017.05.159

    Article  Google Scholar 

  25. Mandler, D., Scholz, F.: Electroanalytical methods. Guide to experiments and applications, 2nded. Analytical and Bioanalytical Chemistry 398 (7–8), 2771–2772. (2010). doi: https://doi.org/10.1007/s00216-010-4195-5

  26. Pięk, M., Piech, R., Paczosa-Bator, B.: All-solid-state nitrate selective electrode with graphene/tetrathiafulvalene nanocomposite as high redox and double layer capacitance solid contact. Electrochim. Acta 210, 407–414 (2013). https://doi.org/10.1016/j.electacta.2016.05.170

    Article  Google Scholar 

  27. Blaz, T., Baś, B., Kupis, J., Migdalski, J., Lewenstam, A.: Multielectrode potentiometry in a one-drop sample. Electrochim. Acta 210, 407–414 (2013). https://doi.org/10.1016/j.elecom.2013.05.021

    Article  Google Scholar 

  28. Zuliani, C., Diamond, D.: Opportunities and challenges of using ion-selective electrodes in environmental monitoring and wearable sensors. Electrochim. Acta 84, 29–34 (2012). https://doi.org/10.1016/j.electacta.2012.04.147

    Article  Google Scholar 

  29. Hu, J., Stein, A., Buhlmann, P.: Rational design of all-solid-state ion-selective electrodes and reference electrodes. Trends Anal. Chem. 76, 102–114 (2015). https://doi.org/10.1016/j.trac.2015.11.004

    Article  Google Scholar 

  30. Cuartero, M., Bakker, E.: Environmental water analysis with membrane electrodes. Curr. Opin. Electrochem. 3(1), 97–105 (2017). https://doi.org/10.1016/j.coelec.2017.06.010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Vtorushina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vtorushina, A., Larionova, E., Romanenko, E., Romanenko, S. (2023). Potentiometric Sensor for the Ion Speciation in the Industrial Waters. In: Lysenko, E., Rogachev, A., Starý, O. (eds) Recent Developments in the Field of Non-Destructive Testing, Safety and Materials Science. ICMTNT 2021. Studies in Systems, Decision and Control, vol 433. Springer, Cham. https://doi.org/10.1007/978-3-030-99060-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99060-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99059-6

  • Online ISBN: 978-3-030-99060-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics