Skip to main content

Dental Implants: An Overview

  • Chapter
  • First Online:
Dental Implants and Oral Microbiome Dysbiosis
  • 322 Accesses

Abstract

The field of Implantology is a relatively new niche when viewed against the entire history of medical disciplines. This newer approach affords such an advantage in therapeutic and cosmetic modalities that it has rapidly become the trending topic of study amongst researchers and clinicians. The field of Dental Implantology alone has evolved into a booming hub of commerce and analysis to an extent that it has generated a revenue of approximately 4.6 billion USD. Why did a fledgling topic evolve so rapidly into a hallmark area of clinical query and application? To address that question, one must delve into the structure and function of an implant and its trending applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Puleo DA, Thomas MV. Implant surfaces. Dent Clin N Am. 2006;50(3):323–38. https://doi.org/10.1016/j.cden.2006.03.001.

    Article  PubMed  Google Scholar 

  2. Ratner, Buddy D. The biocompatibility of implant materials: Elsevier (Host response to biomaterials); 2015.

    Book  Google Scholar 

  3. Lee J. Cochlear implantation, enhancements, transhumanism and posthumanism. Some human questions. Sci Eng Ethics. 2016;22(1):67–92. https://doi.org/10.1007/s11948-015-9640-6.

    Article  PubMed  Google Scholar 

  4. Capellato P, Camargo SEA, Sachs D. Biological response to nanosurface modification on metallic biomaterials. Curr Osteoporos Rep. 2020;18(6):790–5. https://doi.org/10.1007/s11914-020-00635-x.

    Article  PubMed  Google Scholar 

  5. Stewart SA, Domínguez-Robles J, Donnelly RF, Larrañeta E. Implantable polymeric drug delivery devices. Classification, manufacture, materials, and clinical applications. Polymers. 2018;10(12) https://doi.org/10.3390/polym10121379.

  6. Misch CE. Dental implant prosthetics. 2nd ed. St. Louis, Missouri: Elsevier Mosby; 2015.

    Google Scholar 

  7. Abraham CM. A brief historical perspective on dental implants, their surface coatings and treatments. Open Dent J. 2014;8:50–5. https://doi.org/10.2174/1874210601408010050.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Abdulmajeed AA, Lim KG, Närhi TO, Cooper LF. Complete-arch implant-supported monolithic zirconia fixed dental prostheses. A systematic review. J Prosthet Dent. 2016;115(6):672–677.e1. https://doi.org/10.1016/j.prosdent.2015.08.025.

    Article  PubMed  Google Scholar 

  9. Al-Sawai A-A, Labib H. Success of immediate loading implants compared to conventionally-loaded implants. A literature review. J Investig Clin Dent. 2016;7(3):217–24. https://doi.org/10.1111/jicd.12152.

    Article  PubMed  Google Scholar 

  10. Jacobs R, van Steenberghe D. From osseoperception to implant-mediated sensory-motor interactions and related clinical implications. J Oral Rehabil. 2006;33(4):282–92. https://doi.org/10.1111/j.1365-2842.2006.01621.x.

    Article  PubMed  Google Scholar 

  11. Mishra SK, Chowdhary R, Chrcanovic BR, Brånemark P-I. Osseoperception in dental implants. A systematic review. J Prosthodont. 2016;25(3):185–95. https://doi.org/10.1111/jopr.12310.

    Article  PubMed  Google Scholar 

  12. Boven GC, Raghoebar GM, Vissink A, Meijer HJA. Improving masticatory performance, bite force, nutritional state and patient's satisfaction with implant overdentures. A systematic review of the literature. J Oral Rehabil. 2015;42(3):220–33. https://doi.org/10.1111/joor.12241.

    Article  PubMed  Google Scholar 

  13. Griggs JA. Dental implants. Dent Clin N Am. 2017;61(4):857–71. https://doi.org/10.1016/j.cden.2017.06.007.

    Article  PubMed  Google Scholar 

  14. Howe M-S, Keys W, Richards D. Long-term (10-year) dental implant survival. A systematic review and sensitivity meta-analysis. J Dent. 2019;84:9–21. https://doi.org/10.1016/j.jdent.2019.03.008.

    Article  PubMed  Google Scholar 

  15. Atieh MA, Alsabeeha N, Duncan WJ. Stability of tapered and parallel-walled dental implants. A systematic review and meta-analysis. Clin Implant Dent Related Res. 2018;20(4):634–45. https://doi.org/10.1111/cid.12623.

    Article  Google Scholar 

  16. Eraslan O, Inan O. The effect of thread design on stress distribution in a solid screw implant. A 3D finite element analysis. Clin Oral Investig. 2010;14(4):411–6. https://doi.org/10.1007/s00784-009-0305-1.

    Article  PubMed  Google Scholar 

  17. Ryu H-S, Namgung C, Lee J-H, Lim Y-J. The influence of thread geometry on implant osseointegration under immediate loading. A literature review. J Adv Prosthodont. 2014;6(6):547–54. https://doi.org/10.4047/jap.2014.6.6.547.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wennerberg A, Albrektsson T, Jimbo R. Implant surfaces and their biological and clinical impact. Heidelberg: Springer; 2015.

    Book  Google Scholar 

  19. Udomsawat C, Rungsiyakull P, Rungsiyakull C, Khongkhunthian P. Comparative study of stress characteristics in surrounding bone during insertion of dental implants of three different thread designs. A three-dimensional dynamic finite element study. Clin Exp Dent Res. 2019;5(1):26–37. https://doi.org/10.1002/cre2.152.

    Article  PubMed  Google Scholar 

  20. Falco A, Berardini M, Trisi P. Correlation between implant geometry, implant surface, insertion torque, and primary stability. In vitro biomechanical analysis. Int J Oral Maxillofac Implants. 2018;33(4):824–30. https://doi.org/10.11607/jomi.6285.

    Article  PubMed  Google Scholar 

  21. Lovatto ST, Bassani R, Sarkis-Onofre R, Dos Santos MBF. Influence of different implant geometry in clinical longevity and maintenance of marginal bone. A systematic review. J Prosthodont. 2019;28(2):e713–21. https://doi.org/10.1111/jopr.12790.

    Article  PubMed  Google Scholar 

  22. Niu W, Wang P, Zhu S, Liu Z, Ji P. Marginal bone loss around dental implants with and without microthreads in the neck. A systematic review and meta-analysis. J Prosthet Dent. 2017;117(1):34–40. https://doi.org/10.1016/j.prosdent.2016.07.003.

    Article  PubMed  Google Scholar 

  23. Al-Thobity AM, Kutkut A, Almas K. Microthreaded implants and crestal bone loss. A systematic review. J Oral Implantol. 2017;43(2):157–66. https://doi.org/10.1563/aaid-joi-D-16-00170.

    Article  PubMed  Google Scholar 

  24. Aslam A, Ahmed B. Platform-switching to preserve peri-implant bone. A meta-analysis. J Coll Physicians Surg Pak. 2016;26(4):315–9.

    PubMed  Google Scholar 

  25. Di Girolamo M, Calcaterra R, Di Gianfilippo R, Arcuri C, Baggi L. Bone level changes around platform switching and platform matching implants. A systematic review with meta-analysis. Oral Implantol. 2016;9(1):1–10. https://doi.org/10.11138/orl/2016.9.1.001.

    Article  Google Scholar 

  26. Macedo JP, Pereira J, Vahey BR, Henriques B, Benfatti CAM, Magini RS, et al. Morse taper dental implants and platform switching. The new paradigm in oral implantology. Eur J Dent. 2016;10(1):148–54. https://doi.org/10.4103/1305-7456.175677.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Meloni SM, Lumbau A, Baldoni E, Pisano M, Spano G, Massarelli O, Tallarico M. Platform switching versus regular platform single implants. 5-year post-loading results from a randomised controlled trial. Int J Oral Implantol (Berl). 2020;13(1):43–52.

    Google Scholar 

  28. Lago L, da Silva L, Martinez-Silva I, Rilo B. Crestal bone level around tissue-level implants restored with platform matching and bone-level implants restored with platform switching. A 5-year randomized controlled trial. Int J Oral Maxillofac Implants. 2018;33(2):448–56. https://doi.org/10.11607/jomi.6149.

    Article  PubMed  Google Scholar 

  29. Hingsammer L, Pommer B, Hunger S, Stehrer R, Watzek G, Insua A. Influence of implant length and associated parameters upon biomechanical forces in finite element analyses. A systematic review. Implant Dent. 2019;28(3):296–305. https://doi.org/10.1097/ID.0000000000000879.

    Article  PubMed  Google Scholar 

  30. Korabi R, Shemtov-Yona K, Rittel D. On stress/strain shielding and the material stiffness paradigm for dental implants. Clin Implant Dent Relat Res. 2017;19(5):935–43. https://doi.org/10.1111/cid.12509.

    Article  PubMed  Google Scholar 

  31. Lemos CAA, Ferro-Alves ML, Okamoto R, Mendonça MR, Pellizzer EP. Short dental implants versus standard dental implants placed in the posterior jaws. A systematic review and meta-analysis. J Dent. 2016;47:8–17. https://doi.org/10.1016/j.jdent.2016.01.005.

    Article  PubMed  Google Scholar 

  32. Papaspyridakos P, Souza A d, Vazouras K, Gholami H, Pagni S, Weber H-P. Survival rates of short dental implants (≤6 mm) compared with implants longer than 6 mm in posterior jaw areas. A meta-analysis. Clin Oral Implants Res. 2018;29 Suppl 16:8–20. https://doi.org/10.1111/clr.13289.

    Article  PubMed  Google Scholar 

  33. Uehara PN, Matsubara VH, Igai F, Sesma N, Mukai MK, Araujo MG. Short dental implants (≤7mm) versus longer implants in augmented bone area. A meta-analysis of randomized controlled trials. Open Dent J. 2018;12:354–65. https://doi.org/10.2174/1874210601812010354.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Javed F, Romanos GE. Role of implant diameter on long-term survival of dental implants placed in posterior maxilla. A systematic review. Clin Oral Investig. 2015;19(1):1–10. https://doi.org/10.1007/s00784-014-1333-z.

    Article  PubMed  Google Scholar 

  35. Gelazius R, Poskevicius L, Sakavicius D, Grimuta V, Juodzbalys G. Dental implant placement in patients on bisphosphonate therapy. A systematic review. J Oral Maxillofac Res. 2018;9(3):e2. https://doi.org/10.5037/jomr.2018.9302.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Moraschini V, Barboza E dS P. Success of dental implants in smokers and non-smokers. A systematic review and meta-analysis. Int J Oral Maxillofac Surg. 2016;45(2):205–15. https://doi.org/10.1016/j.ijom.2015.08.996.

    Article  PubMed  Google Scholar 

  37. Naujokat H, Kunzendorf B, Wiltfang J. Dental implants and diabetes mellitus-a systematic review. Int J Implant Dent. 2016;2(1):5. https://doi.org/10.1186/s40729-016-0038-2.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Halpern LR, Adams DR. Medically complex dental implant patients. Controversies about systemic disease and dental implant success/survival. Dent Clin N Am. 2021;65(1):1–19. https://doi.org/10.1016/j.cden.2020.08.001.

    Article  PubMed  Google Scholar 

  39. Albrektsson T, Wennerberg A. On osseointegration in relation to implant surfaces. Clin Implant Dent Relat Res. 2019;21(Suppl 1):4–7. https://doi.org/10.1111/cid.12742.

    Article  PubMed  Google Scholar 

  40. Albrektsson T, Wennerberg A. Oral implant surfaces. Part 1—review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. Int J Prosthodont. 2004;17(5):536–43.

    PubMed  Google Scholar 

  41. Smeets R, Stadlinger B, Schwarz F, Beck-Broichsitter B, Jung O, Precht C, et al. Impact of dental implant surface modifications on osseointegration. Biomed Res Int. 2016;2016:6285620. https://doi.org/10.1155/2016/6285620.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Greenstein G, Cavallaro J. Implant insertion torque. Its tole in achieving primary stability of restorable dental implants. Compend Contin Educ Dent. 2017;38(2):88–95. quiz 96

    PubMed  Google Scholar 

  43. Lages FS, Douglas-de DW, Costa FO. Relationship between implant stability measurements obtained by insertion torque and resonance frequency analysis. A systematic review. Clin Implant Dent Relat Res. 2018;20(1):26–33. https://doi.org/10.1111/cid.12565.

    Article  PubMed  Google Scholar 

  44. Trisi P, Berardini M, Falco A, Vulpiani MP. Validation of value of actual micromotion as a direct measure of implant micromobility after healing (secondary implant stability). An in vivo histologic and biomechanical study. Clin Oral Implants Res. 2016;27(11):1423–30. https://doi.org/10.1111/clr.12756.

    Article  PubMed  Google Scholar 

  45. Trisi P, Perfetti G, Baldoni E, Berardi D, Colagiovanni M, Scogna G. Implant micromotion is related to peak insertion torque and bone density. Clin Oral Implants Res. 2009;20(5):467–71. https://doi.org/10.1111/j.1600-0501.2008.01679.x.

    Article  PubMed  Google Scholar 

  46. Berardini M, Trisi P, Sinjari B, Rutjes AWS, Caputi S. The effects of high insertion torque versus low insertion torque on marginal bone resorption and implant failure rates. A systematic review with meta-analyses. Implant Dent. 2016;25(4):532–40. https://doi.org/10.1097/ID.0000000000000422.

    Article  PubMed  Google Scholar 

  47. Lemos CAA, Verri FR, Oliveira N, Olavo B d, Cruz RS, Luna G, Jéssica M, da Silva Casado BG, Pellizzer EP. Clinical effect of the high insertion torque on dental implants. A systematic review and meta-analysis. J Prosthet Dent. 2021;126:490. https://doi.org/10.1016/j.prosdent.2020.06.012.

    Article  PubMed  Google Scholar 

  48. Tomasetti BJ, Ewers R. Short implants. Cham: Springer; 2020.

    Book  Google Scholar 

  49. Cicciù M, Tallarico M. Dental implant materials. Current state and future perspectives. Materials (Basel). 2021;14(2) https://doi.org/10.3390/ma14020371.

  50. Jiang X, Yao Y, Tang W, Han D, Zhang L, Zhao K, et al. Design of dental implants at materials level. An overview. J Biomed Mater Res A. 2020;108(8):1634–61. https://doi.org/10.1002/jbm.a.36931.

    Article  PubMed  Google Scholar 

  51. Kim J-J, Lee J-H, Kim JC, Lee J-B, Yeo I-SL. Biological responses to the transitional area of dental implants. Material- and structure-dependent responses of peri-implant tissue to abutments. Materials (Basel). 2019;13(1) https://doi.org/10.3390/ma13010072.

  52. Dini C, Costa RC, Sukotjo C, Takoudis CG, Mathew MT, Barão VAR. Progression of bio-tribocorrosion in implant dentistry. Front Mech Eng. 2020;6:17. https://doi.org/10.3389/fmech.2020.00001.

    Article  Google Scholar 

  53. Nicholson JW. Titanium alloys for dental implants. A review. Prosthesis. 2020;2(2):100–16. https://doi.org/10.3390/prosthesis2020011.

    Article  Google Scholar 

  54. Depprich R, Naujoks C, Ommerborn M, Schwarz F, Kübler NR, Handschel J. Current findings regarding zirconia implants. Clin Implant Dent Relat Res. 2014;16(1):124–37. https://doi.org/10.1111/j.1708-8208.2012.00454.x.

    Article  PubMed  Google Scholar 

  55. Patil R. Zirconia versus titanium dental implants. A systematic review. J Dent Implant. 2015;5(1):39. https://doi.org/10.4103/0974-6781.154430.

    Article  Google Scholar 

  56. Holm C, Morisbak E, Kalfoss T, Dahl JE. In vitro element release and biological aspects of base-metal alloys for metal-ceramic applications. Acta Odontol Scand. 2015;1(2–4):70–5. https://doi.org/10.3109/23337931.2015.1069714.

    Article  Google Scholar 

  57. Kassapidou M, Franke SV, Hjalmarsson L, Johansson CB. Cobalt-chromium alloys in fixed prosthodontics in Sweden. Acta Odontol Scand. 2017;3(1):53–62. https://doi.org/10.1080/23337931.2017.1360776.

    Article  Google Scholar 

  58. Souza JCM, Apaza-Bedoya K, Benfatti CAM, Silva FS, Henriques B. A comprehensive review on the corrosion pathways of titanium dental implants and their biological adverse effects. Metals. 2020;10(9):1272. https://doi.org/10.3390/met10091272.

    Article  Google Scholar 

  59. Sicilia A, Cuesta S, Coma G, Arregui I, Guisasola C, Ruiz E, Maestro A. Titanium allergy in dental implant patients. A clinical study on 1500 consecutive patients. Clin Oral Implants Res. 2008;19(8):823–35. https://doi.org/10.1111/j.1600-0501.2008.01544.x.

    Article  PubMed  Google Scholar 

  60. Cosgarea R, Gasparik C, Dudea D, Culic B, Dannewitz B, Sculean A. Peri-implant soft tissue colour around titanium and zirconia abutments. A prospective randomized controlled clinical study. Clin Oral Implants Res. 2015;26(5):537–44. https://doi.org/10.1111/clr.12440.

    Article  PubMed  Google Scholar 

  61. Thoma DS, Ioannidis A, Cathomen E, Hämmerle CHF, Hüsler J, Jung RE. Discoloration of the peri-implant mucosa caused by zirconia and titanium implants. Int J Periodontics Restorative Dent. 2016;36(1):39–45. https://doi.org/10.11607/prd.2663.

    Article  PubMed  Google Scholar 

  62. Andreiotelli M, Wenz HJ, Kohal R-J. Are ceramic implants a viable alternative to titanium implants? A systematic literature review. Clin Oral Implants Res. 2009;20(Suppl 4):32–47. https://doi.org/10.1111/j.1600-0501.2009.01785.x.

    Article  PubMed  Google Scholar 

  63. Scarano A, Piattelli M, Caputi S, Favero GA, Piattelli A. Bacterial adhesion on commercially pure titanium and zirconium oxide disks. An in vivo human study. J Periodontol. 2004;75(2):292–6. https://doi.org/10.1902/jop.2004.75.2.292.

    Article  PubMed  Google Scholar 

  64. Ong JL, Chan DC. Hydroxyapatite and their use as coatings in dental implants. A review. Crit Rev Biomed Eng. 2000;28(5–6):667–707. https://doi.org/10.1615/CritRevBiomedEng.v28.i56.10.

    Article  PubMed  Google Scholar 

  65. Pajor K, Pajchel L, Kolmas J. Hydroxyapatite and fluorapatite in conservative dentistry and oral implantology—A review. Materials. 2019;12(17) https://doi.org/10.3390/ma12172683.

  66. Knaus J, Schaffarczyk D, Cölfen H. On the future design of bio-inspired polyetheretherketone dental implants. Macromol Biosci. 2020;20(1):e1900239. https://doi.org/10.1002/mabi.201900239.

    Article  PubMed  Google Scholar 

  67. Osman RB, Swain MV. A critical review of dental implant materials with an emphasis on titanium versus zirconia. Materials (Basel). 2015;8(3):932–58. https://doi.org/10.3390/ma8030932.

    Article  PubMed Central  Google Scholar 

  68. Al-Rabab'ah M, Hamadneh W', Alsalem I, Khraisat A, Abu Karaky A. Use of high performance polymers as dental implant abutments and frameworks. A case series report. J Prosthodont. 2019;28(4):365–72. https://doi.org/10.1111/jopr.12639.

    Article  PubMed  Google Scholar 

  69. Nagasawa M, Takano R, Maeda T, Uoshima K. Observation of the bone surrounding an overloaded implant in a novel rat model. Int J Oral Maxillofac Implants. 2013;28(1):109–16. https://doi.org/10.11607/jomi.2388.

    Article  PubMed  Google Scholar 

  70. Mishra S, Chowdhary R. PEEK materials as an alternative to titanium in dental implants. A systematic review. Clin Implant Dent Relat Res. 2019;21(1):208–22. https://doi.org/10.1111/cid.12706.

    Article  PubMed  Google Scholar 

  71. Najeeb S, Bds ZK, Bds SZ, Bds MSZ. Bioactivity and osseointegration of PEEK are inferior to those of titanium. A systematic review. J Oral Implantol. 2016;42(6):512–6. https://doi.org/10.1563/aaid-joi-d-16-00072.

    Article  PubMed  Google Scholar 

  72. Rahmitasari F, Ishida Y, Kurahashi K, Matsuda T, Watanabe M, Ichikawa T. PEEK with reinforced materials and modifications for dental implant applications. Dent J. 2017;5(4) https://doi.org/10.3390/dj5040035.

  73. Xie C, Zhang J-F, Li S. Polymer infiltrated ceramic hybrid composites as dental materials. Oral Health Dent Stud. 2018;1(1) https://doi.org/10.31532/OralHealthDentStud.1.1.002.

  74. Badami V, Ahuja B. Biosmart materials. Breaking new ground in dentistry. Sci World J. 2014;2014:986912. https://doi.org/10.1155/2014/986912.

    Article  Google Scholar 

  75. Jeong B, Gutowska A. Lessons from nature. Stimuli-responsive polymers and their biomedical applications. Trends Biotechnol. 2002;20(7):305–11. https://doi.org/10.1016/S0167-7799(02)01962-5.

    Article  PubMed  Google Scholar 

  76. Sivakumar P, Naseem I. Biosmart materials the future of dentistry. A review. Int J Contemp Microbiol. 2016;9(10):1737. https://doi.org/10.5958/0974-360X.2016.00350.4.

    Article  Google Scholar 

  77. Wieszczycka K, Staszak K, Woźniak-Budych MJ, Litowczenko J, Maciejewska BM, Jurga S. Surface functionalization—The way for advanced applications of smart materials. Coord Chem Rev. 2021;436:213846. https://doi.org/10.1016/j.ccr.2021.213846.

    Article  Google Scholar 

  78. Karacan I, Macha IJ, Choi G, Cazalbou S, Ben-Nissan B. Antibiotic containing poly lactic acid/hydroxyapatite biocomposite coatings for dental implant applications. KEM. 2017;758:120–5. https://doi.org/10.4028/www.scientific.net/KEM.758.120.

    Article  Google Scholar 

  79. Dong Y, Ye H, Liu Y, Xu L, Wu Z, Hu X, et al. pH dependent silver nanoparticles releasing titanium implant. A novel therapeutic approach to control peri-implant infection. Colloids Surf B Biointerfaces. 2017;158:127–36. https://doi.org/10.1016/j.colsurfb.2017.06.034.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinay Sivaswamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sivaswamy, V., Vasudevan, S. (2022). Dental Implants: An Overview. In: Neelakantan, P., Princy Solomon, A. (eds) Dental Implants and Oral Microbiome Dysbiosis. Springer, Cham. https://doi.org/10.1007/978-3-030-99014-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99014-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99013-8

  • Online ISBN: 978-3-030-99014-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics