Skip to main content

Satellite-Based Terrestrial Evapotranspiration Product for India

  • Chapter
  • First Online:
Geospatial Technologies for Resources Planning and Management

Abstract

Evapotranspiration (ET) is the major component of the terrestrial water cycle. Information on ET will help monitor crop water requirement, crop phenology & production, and better irrigation water management. Despite its importance, ET’s near-real-time estimation at a varied spatial and temporal scale is not available. Different types of instruments are used to measure ET, which includes simple Lysimeter to more complex eddy covariance flux towers. However, for operational estimation of ET at a regional scale, methods like crop models or remote sensing-based techniques provide a reliable alternative. Estimation of ET using the remote sensing technique uses the various geophysical and biophysical parameters collected from the satellite platform. The satellite platform enables to estimate ET over a large area at a frequent time interval with reliable accuracy levels acceptable for several applications. This chapter discusses the different methods of deriving the ET and the justification for adopting the Priestley Taylor algorithm. It also describes the methodology of deriving the terrestrial ET in a near real-time basis and discusses the intra-seasonal dynamics and comparison with the field ET data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ai Z, Yang Y (2016) Modification and validation of Priestley–Taylor model for estimating cotton evapotranspiration under plastic mulch condition. J Hydrometeorol 17(4):1281–1293

    Google Scholar 

  • Allen R, Smith M, Pereira L, Perrier A (1994) An update for the calculation of reference evapotranspiration. ICID Bull 43(2):35–92

    Google Scholar 

  • Allen RG, Tasumi M, Trezza R (2007) Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—model. J Irrig Drain Eng 133(4):380–394

    Google Scholar 

  • Baker N (2013) Joint Polar Satellite System (JPSS) VIIRS land surface temperature algorithm theoretical basis document (ATBD). NASA, Goddard Space Flight CenterGreenbelt, Maryland

    Google Scholar 

  • Bastiaanssen W, Menenti M, Feddes R, Holtslag A (1998a) A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J Hydrol 212–213:198–212

    Article  Google Scholar 

  • Bastiaanssen W, Menenti M, Feddes R, Holtslag A (1998b) A remote sensing surface energy balance algorithm for land (SEBAL).: Part 2: Validation. J Hydrol 213–229

    Google Scholar 

  • Bastiaanssen WG, Noordman EJ, Pelgrum H, Davids G (2005) SEBAL model with remotely sensed data to improve water-resources management under actual field conditions. J Irrig Drainage Eng 131(1):85–93

    Google Scholar 

  • Bhattacharya, BK, Rahul N (2015) Surface Insolation over Land from INSAT-3D, INSAT-3D Algorithm Theoretical Basis Document, pp. 335–360, https://mosdac.gov.in/data/doc/INSAT_3D_ATBD_MAY_2015.pdf

  • Biggs T, Petropoulos G, Velpuri N, Marshall M (2015) Remote sensing of evapotranspiration from croplands. In: Thenkabail P (ed) Remote sensing handbook: remote sensing of water resources, disasters, and urban studies. CRC Press, pp 59–99

    Google Scholar 

  • Bisht G, Venturini V, Islam S, Jiang L (2005) Estimation of the net radiation using MODIS (Moderate Resolution Imaging Spectroradiometer) data for clear sky days. Remote Sens Environ 97(1):52–67

    Google Scholar 

  • Blaney HF, Criddle WD (1950) Determining water requirements in irrigated areas from climatological and irrigation data. U.S. Soil Conservation Service, Pap. No. 96, 48 pp

    Google Scholar 

  • Brooks KN, Ffolliott PF, Magner JA (2013) Hydrology and the management of watersheds, 4th edn. John Wiley & Sons Inc.

    Google Scholar 

  • Brooks KN, Ffolliott PF, Magner JA (2012) Hydrology and the management of watersheds, 4th edn. Wiley & Sons, Inc

    Google Scholar 

  • Brutsaert W (1982) Evaporation into the atmosphere—theory, history and applications. Springer Netherlands

    Google Scholar 

  • Campbell GS (1977) An introduction to environmental biophysics. Springer, New York

    Book  Google Scholar 

  • Carlson TN, Gillies RR, Perry EM (1994) Method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sens Rev 9(1–2):161–173

    Article  Google Scholar 

  • Castellvi F, Stockle CO, Perez PJ, Ibañez M (2001) Comparison of methods for applying the Priestley–Taylor equation at a regional scale. Hydrological Process 15(9):1609–1620

    Google Scholar 

  • Diaz-Espejo A, Verhoef A, Knight R (2005) Illustration of micro-scale advection using grid-pattern mini-lysimeters. Agric for Meteorol 129(1–2):39–52

    Article  ADS  Google Scholar 

  • Dingman SL (2002) Physical hydrology, 2nd edn. Prentice Hall

    Google Scholar 

  • Ershadi A, McCabea M, Evans J, Walker J (2013) Effects of spatial aggregation on the multi-scale estimation of evapotranspiration. Remote Sens Environ 131:51–62

    Article  ADS  Google Scholar 

  • Fisher BT (2008) Ecosystem services and economic theory: integration for policy relevant research. Ecol Appl 18:2050–2067

    Article  Google Scholar 

  • Flint AL, Childs SW (1991) Use of the Priestley-Taylor evaporation equation for soil water limited conditions in a small forest clearcut. Agric For Meteorol 56(3–4):247–260

    Google Scholar 

  • French AN, Alfieri JG, Kustas WP, Prueger JH, Hipps LE, Chávez JL, Evett SR, Howell TA, Gowda PH, Hunsaker DJ, Thorp KR (2012) Estimation of surface energy fluxes using surface renewal and flux variance techniques over an advective irrigated agricultural site. Adv Water Resour 50:91–105

    Google Scholar 

  • Gillies RR, Kustas WP, Humes KS (1997) A verification of the “triangle” method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface e. Int J Remote Sens 18(15):3145–3166

    Article  Google Scholar 

  • Glenn EP, Huete AR, Nagler PL, Hirschboeck KK, Brown P (2007) Integrating remote sensing and ground methods to estimate evapotranspiration. Crit Rev Plant Sci 26(3):139–168

    Article  Google Scholar 

  • Glenn EP, Morino K, Didan K, Jordan F, Carroll KC, Nagler PL, Hultine K, Sheader L, Waugh J (2008a). Scaling sap flux measurements of grazed and ungrazed shrub communities with fine and coarse‐resolution remote sensing. Ecohydrol Ecosyst Land Water Process Interact Ecohydrogeomorphol 1(4):316–329

    Google Scholar 

  • Glenn E, Huete A, Nagler P, Nelson S (2008b) Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: what vegetation indices can and cannot tell us about the landscape. Sensors 8(4):2136–2160

    Google Scholar 

  • Glenn EP, Doody TM, Guerschman JP, Huete AR, King EA, McVicar TR, Van Dijk AI, Van Niel TG, Yebra M, Zhang Y (2011) Actual evapotranspiration estimation by ground and remote sensing methods: the Australian experience. Hydrol Process 25(26):4103–4116

    Google Scholar 

  • GML E (2020) Solar calculation details. Retrieved 28 Apr 2020, from Global Monitoring Laboratory, Earth System Research Laboratories: https://www.esrl.noaa.gov/gmd/grad/solcalc/calcdetails.html

  • Godin R (2014) Joint polar satellite system (JPSS) VIIRS vegetation index (VVI) algorithm theoretical basis document. NASA, Goddard Space Flight CenterGreenbelt, Maryland

    Google Scholar 

  • Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from ambient air temperature. In: Winter meeting of american society of agricultural engineers. American Society of Agricultural Engineers, Chicago

    Google Scholar 

  • Hoekstra AY, Mekonnen MM (2012) The water footprint of humanity. Proc Natl Acad Sci 109(9):3232–3237

    Google Scholar 

  • Jackson RD, Idso SB, Reginato RJ, Pinter Jr PJ (1981) Canopy temperature as a crop water stress indicator. Water Resour Res 17(4):1133–1138

    Google Scholar 

  • Jiang L, Islam S (1999) A methodology for estimation of surface evapotranspiration over large areas using remote sensing observations. Geophys Res Lett 26(17):2773–2776

    Google Scholar 

  • Jiang L, Islam S (2001) Estimation of surface evaporation map over southern Great Plains using remote sensing data. Water Resour Res 37(2):329–340

    Google Scholar 

  • Jiang L, Islam S (2003) An intercomparison of regional latent heat flux estimation using remote sensing data. Int J Remote Sens 24(11):2221–2236

    Article  Google Scholar 

  • Jin ZY (2011) A new parameterization of spectral and broadband ocean surface albedo. Opt Express 19(27):26429–26443. https://doi.org/10.1364/OE.19.026429

    Article  ADS  PubMed  Google Scholar 

  • Jung M, Reichstein M, Margolis HA, Cescatti A, Richardson AD, Arain MA, Arneth A, Bernhofer C, Bonal D, Chen J, Gianelle D, Gobron N, Kiely G, Kutsch W, Lasslop G, Law BE, Lindroth A, Merbold L, Montagnani L, Moors EJ, Papale D, Sottocornola M, Vaccari F, Williams C (2011) Global patterns of land‐atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observation. J Geophys Res 116(G3).

    Google Scholar 

  • Kalma JD, McVicar TR, McCabe MF (2008) Estimating land surface evaporation: a review of methods using remotely sensed surface temperature data. Surv Geophys 29:421–469

    Article  ADS  Google Scholar 

  • Korzoun VI, Sokolov AA, Budyko MI, Voskresensky KP, Kalinin GP (1978) World water balance and water resources of the earth. In: National Committee for the IHD (USSR), Studies and Reports in Hydrology (UNESCO), No. 25. United Nations Educational, Scientific and Cultural Organization, Paris, p 638

    Google Scholar 

  • Kotoda K (1986) Estimation of river basin evapotranspiration. Environmental research center papers, no 8, pp 1–66

    Google Scholar 

  • Kustas WP, Norman JM (1999) Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover. Agric For Meteorol 94(1):13–29

    Google Scholar 

  • Kustas WP, Stannard DI, Allwine KJ (1996) Variability in surface energy flux partitioning during Washita '92: Resulting effects on Penman-Monteith and Priestley-Taylor parameters. Agric For Meteorol 82(1–4):171–193

    Google Scholar 

  • Lei H, Yang D (2010) Interannual and seasonal variability in evapotranspiration and energy partitioning over an irrigated cropland in the North China Plain. Agric For Meteorol 150(4):581–589

    Google Scholar 

  • Liang S (2001) Narrowband to broadband conversions of land surface albedo I: Algorithms. Remote Sens Environ 76(2):213–238

    Google Scholar 

  • L'vovich MI, White GF (1990) Use and transformation of terrestrial water systems. In: Turner II BL, Clark WC, Kates RW, Mathews JT, Richards JF, Meyer WB (eds) The earth as transformed by human action: global and regional changes in the biosphere over the past 300 years. Cambridge University Press, Cambridge, UK, p 713

    Google Scholar 

  • Ma Y, Su Z, Li Z, Koike T, Menenti M (2002) Determination of regional net radiation and soil heat flux over a heterogeneous landscape of the Tibetan Plateau. Hydrol Process 16(15):2963–2971

    Google Scholar 

  • Melesse AM, Frank A, Nangia V, Hanson J (2008) Analysis of energy fluxes and land surface parameters in a grassland ecosystem: a remote sensing perspective. Int J Remote Sens 29(11), 3325–3341

    Google Scholar 

  • Monteith JL (1973) Principles of Environmental Physics. Edward Arnold Limited, London

    Google Scholar 

  • Moran M, Clarke T, Inoue Y, Vidal A (1994) Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sens Environ 49(3):246–263

    Google Scholar 

  • Mu Q, Zhao M, Kimball JS, McDowell NG, Running SW (2013) A remotely sensed global terrestrial drought severity index. Bull Am Meteorol Soc 94(1):83–98

    Google Scholar 

  • Nagler P, Morino K, Murray R, Osterberg J, Glenn E (2009) An empirical algorithm for estimating agricultural and riparian evapotranspiration using MODIS enhanced vegetation index and ground measurements of ET. I. Description of method. Remote Sens 1(4):1273–1297

    Google Scholar 

  • Nemani RR, Running SW (1989) Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data. J Appl Meteorol 28:276–284

    Article  Google Scholar 

  • Norman JM (1995) Source approach for estimating soil 695 and vegetation energy fluxes in observations of directional radiometric surface temperature. Agric for Meteorol 77:263–293

    Article  ADS  Google Scholar 

  • Overgaard J, Rosbjerg D, Butts MB (2006) Land-surface modelling in hydrological perspective—a review. Biogeosciences 3(2):229–241

    Google Scholar 

  • Parlange MB, Katul GG (1992) Estimation of the diurnal variation of potential evaporation from a wet bare soil surface. J Hydrol 132(1–4):71–89

    Google Scholar 

  • Pavolonis MJ and Heidinger AK (2004) Daytime cloud overlap detection from AVHRR and VIIRS, J Appl Meteorol 43:762–778

    Google Scholar 

  • Penman HL (1948) Natural evaporation from open water, bare soil and grass. Proc R Soc London Ser A Math Phys Sci 193(1032):120–145

    Google Scholar 

  • Pereira AR (2004) The Priestley–Taylor parameter and the decoupling factor for estimating reference evapotranspiration. Agric For Meteorol 125(3–4):305–313

    Google Scholar 

  • Petropoulos GP, Carlson TN, Griffiths HM (2013) Turbulent fluxes of heat and moisture at the earth’s land surface: importance, controlling parameters, and conventional measurement techniques. In: Petropoulos GP, Petropoulos GP (ed) Remote sensing of energy fluxes and soil moisture content. CRC Press, Taylor & Francis Group, p 562

    Google Scholar 

  • Prata AJ (1996) A new long‐wave formula for estimating downward clear‐sky radiation at the surface. Quar J R Meteorol Soc 122(533):1127–1151

    Google Scholar 

  • Price J (1990) Using spatial context in satellite data to infer regional scale evapotranspiration. IEEE Trans Geosci Remote Sens 28(5):940–948

    Google Scholar 

  • Priestley C, Taylor R (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Rev 100(2):81–92

    Google Scholar 

  • Sandholt I, Rasmussen K, Andersen J (2002) A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens Environ 79(2–3):213–224

    Google Scholar 

  • Sellers PJ, Tucker CJ, Collatz GJ, Los SO, Justice CO, Dazlich DA, Randall DA (1996) A revised land surface parameterization (SiB2) for atmospheric GCMS. Part II: The generation of global fields of terrestrial biophysical parameters from satellite data. J Clim 9:706–737

    Article  ADS  Google Scholar 

  • Shahidian S, Serralheiro R, Serrano J, Teixeira J, Haie N, Santos F (2012) Hargreaves and other reduced-set methods for calculating evapotranspiration. In: Irmak A (ed) Evapotranspiration—remote sensing and modeling, pp 59–80

    Google Scholar 

  • Shiklomanov IA (2000) Appraisal and assessment of world water resources. Water Int 25(1):11–32

    Article  Google Scholar 

  • Singh RT (2013). Outgoing Longwave Radiation Product ATBD. https://doi.org/10.19038/SAC/10/3DIMG_L2B_OLR

    Article  Google Scholar 

  • Su, Z. (2002). The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes, Hydrol. Earth Syst Sci 6:85–100. https://doi.org/10.5194/hess-6-85-2002

  • Sun Q, Wu Z, Tan J (2012) The relationship between land surface temperature and land use/land cover in Guangzhou, China. Environ Earth Sci 65:1687–1694

    Article  Google Scholar 

  • Sun Z, Gebremichael M, Wang Q (2013) Evaluation of empirical remote sensing-based equations for estimating soil heat flux. J Meteorol Soc Jpn 91(5):627–638

    Google Scholar 

  • Swinbank WC (1951) The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere. J Meteorol 8(3):135–145

    Google Scholar 

  • Yao Y, Liang S, Li X, Chen J, Wang K, Jia K, Cheng J, Jiang B, Fisher JB, Mu Q, Gruenwald T (2015) A satellite-based hybrid algorithm to determine the Priestley–Taylor parameter for global terrestrial latent heat flux estimation across multiple biomes. Remote Sens Environ 165:216–233

    Google Scholar 

  • Zhang L, Hickel K, Dawes WR, Chiew FH, Western AW, Briggs PR (2004) A rational function approach for estimating mean annual evapotranspiration. Water Resour Res 40(W02502)

    Google Scholar 

Download references

Acknowledgements

This work is carried out under National Hydrology Project at National Remote Sensing Centre, ISRO Hyderabad. The authors thank SAC-ISRO and IMD for providing data for the project. The authors thank Data Processing group and agriculture group of NRSC Hyderabad for providing data support for this project. The authors would like to thank Director NRSC for providing guidance and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Chandrasekar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chandrasekar, K. et al. (2022). Satellite-Based Terrestrial Evapotranspiration Product for India. In: Jha, C.S., Pandey, A., Chowdary, V., Singh, V. (eds) Geospatial Technologies for Resources Planning and Management. Water Science and Technology Library, vol 115. Springer, Cham. https://doi.org/10.1007/978-3-030-98981-1_17

Download citation

Publish with us

Policies and ethics