Skip to main content

The Role of the Microenvironment in Endometriosis: Parallels and Distinctions to Cancer

  • Chapter
  • First Online:
Biomarkers of the Tumor Microenvironment
  • 1470 Accesses

Abstract

Phenotypes viewed as distinctive to cancer are often recapitulated in benign disease and consideration of these diseases can inform our understanding of the cancer microenvironment. Endometriosis is an estrogen-dependent inflammatory disease characterized by the presence of “metastatic” endometrium-like glands and stroma, together with hemosiderin and (often) fibrosis outside the uterine lumen. It is most often diagnosed as a result of pain and/or infertility and results in substantial economic and personal costs. However, in contrast to cancer it is typically not dysplastic and rarely causes death, though it increases the risk of several ovarian cancer subtypes. Like cancers, the disease is angiogenesis-dependent and genetic studies demonstrate that the VEGFR2 signaling axis plays a key role in the disease. In addition, molecular studies demonstrate that the immune/inflammatory milieu of endometriosis lesions is more similar to that of endometriosis-associated ovarian cancers (EAOCs) than it is to eutopic endometrium. This is consistent with the dysregulation of a host of immune/inflammatory cells and cytokines in disease tissue in ways that often resemble dysregulation observed in ovarian cancer. However, in contrast to EAOC, pain is often a key early symptom of endometriosis and can accompany even very small lesions. Another key contrast with cancers is the very limited range of medical treatments available. This is partially driven by the much more limited range of side effects that is acceptable for treatment of a non-life-threatening illness in women of childbearing age, but is also a function of the limited study of endometriosis pathophysiology that has occurred thus far.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eskenazi B, Warner ML. Epidemiology of endometriosis. Obstet Gynecol Clin N Am. 1997;24(2):235–58.

    Article  CAS  Google Scholar 

  2. Missmer SA, Hankinson SE, et al. Incidence of laparoscopically confirmed endometriosis by demographic, anthropometric, and lifestyle factors. Am J Epidemiol. 2004;160(8):784–96.

    Article  PubMed  Google Scholar 

  3. Giudice LC. Clinical practice. Endometriosis. N Engl J Med. 2010;362(25):2389–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fuldeore M, Yang H, et al. Healthcare utilization and costs in women diagnosed with endometriosis before and after diagnosis: a longitudinal analysis of claims databases. Fertil Steril. 2015;103(1):163–71.

    Article  PubMed  Google Scholar 

  5. Simoens S, Dunselman G, et al. The burden of endometriosis: costs and quality of life of women with endometriosis and treated in referral centres. Hum Reprod. 2012;27(5):1292–9.

    Article  PubMed  Google Scholar 

  6. Ozkan S, Arici A. Advances in treatment options of endometriosis. Gynecol Obstet Investig. 2009;67(2):81–91.

    Article  CAS  Google Scholar 

  7. Hornstein MD, Hemmings R, et al. Use of nafarelin versus placebo after reductive laparoscopic surgery for endometriosis. Fertil Steril. 1997;68(5):860–4.

    Article  CAS  PubMed  Google Scholar 

  8. Parazzini F, Fedele L, et al. Postsurgical medical treatment of advanced endometriosis: results of a randomized clinical trial. Am J Obstet Gynecol. 1994;171(5):1205–7.

    Article  CAS  PubMed  Google Scholar 

  9. Telimaa S, Puolakka J, et al. Placebo-controlled comparison of danazol and high-dose medroxyprogesterone acetate in the treatment of endometriosis. Gynecol Endocrinol. 1987;1(1):13–23.

    Article  CAS  PubMed  Google Scholar 

  10. Candiani GB, Fedele L, et al. Presacral neurectomy for the treatment of pelvic pain associated with endometriosis: a controlled study. Am J Obstet Gynecol. 1992;167(1):100–3.

    Article  CAS  PubMed  Google Scholar 

  11. Hanahan D, Robert A (2011) Hallmarks of cancer: the next generation. Cell 144.

    Google Scholar 

  12. Sampson JA, Albany NY (1927) Peritoneal endometriosis due to the menstrual dissemination of endometrial tissue into the peritoneal cavity. Am J Obstet Gynecol 14.

    Google Scholar 

  13. Suryawanshi S, Huang X, et al. (2014) Complement pathway is frequently altered in endometriosis and endometriosis-associated ovarian cancer. Clin Cancer Res 20.

    Google Scholar 

  14. Wendel JRH, Wang X, et al. (2018) The Endometriotic tumor microenvironment in ovarian cancer. Cancers (Basel) 10.

    Google Scholar 

  15. Anglesio MS, Papadopoulos N, et al. Cancer-associated mutations in endometriosis without cancer. N Engl J Med. 2017;376(19):1835–48.

    Article  PubMed  PubMed Central  Google Scholar 

  16. McLennan CE, Rydell AH. Extent of endometrial shedding during normal menstruation. Obstet Gynecol. 1965;26(5):605–21.

    CAS  PubMed  Google Scholar 

  17. Yamaguchi M, Yoshihara K, et al. Three-dimensional understanding of the morphological complexity of the human uterine endometrium. iScience. 2021;24(4):102258.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tempest N, Jansen M, et al. Histological 3D reconstruction and in vivo lineage tracing of the human endometrium. J Pathol. 2020;251(4):440–51.

    Article  CAS  PubMed  Google Scholar 

  19. Baerwald AR, Pierson RA. Endometrial development in association with ovarian follicular waves during the menstrual cycle. Ultrasound Obstet Gynecol. 2004;24(4):453–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shafrir AL, Farland LV, et al. Risk for and consequences of endometriosis: a critical epidemiologic review. Best Pract Res Clin Obstet Gynaecol. 2018;51:1–15.

    Article  CAS  PubMed  Google Scholar 

  21. Zondervan KT, Becker CM, et al. Endometriosis. Nat Rev Dis Primers. 2018;4(1):9.

    Article  PubMed  Google Scholar 

  22. Suda K, Nakaoka H, et al. Clonal expansion and diversification of cancer-associated mutations in endometriosis and normal endometrium. Cell Rep. 2018;24(7):1777–89.

    Article  CAS  PubMed  Google Scholar 

  23. Fattori V, Ferraz CR, et al. Neuroimmune communication in infection and pain: friends or foes? Immunol Lett. 2021;229:32–43.

    Article  CAS  PubMed  Google Scholar 

  24. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285(21):1182–6.

    Article  CAS  PubMed  Google Scholar 

  25. Ferrara N, Gerber HP, et al. The biology of VEGF and its receptors. Nat Med. 2003;9(6):669–76.

    Article  CAS  PubMed  Google Scholar 

  26. Carmeliet P, Ferreira V, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature. 1996;380(6573):435–9.

    Article  CAS  PubMed  Google Scholar 

  27. Azar DT. Corneal angiogenic privilege: angiogenic and antiangiogenic factors in corneal avascularity, vasculogenesis, and wound healing (an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc. 2006;104:264–302.

    PubMed  PubMed Central  Google Scholar 

  28. Johnson KE, Wilgus TA. Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair. Adv Wound Care (New Rochelle). 2014;3(10):647–61.

    Article  PubMed Central  Google Scholar 

  29. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407(6801):249–57.

    Article  CAS  PubMed  Google Scholar 

  30. Selvaraj D, Gangadharan V, et al. A functional role for VEGFR1 expressed in peripheral sensory neurons in cancer pain. Cancer Cell. 2015;27(6):780–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Marcoval J, Moreno A, et al. Angiogenesis and malignant melanoma. Angiogenesis is related to the development of vertical (tumorigenic) growth phase. J Cutan Pathol. 1997;24(4):212–8.

    Article  CAS  PubMed  Google Scholar 

  32. Sapkota Y, Steinthorsdottir V, et al. Meta-analysis identifies five novel loci associated with endometriosis highlighting key genes involved in hormone metabolism. Nat Commun. 2017;8:15539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Forsythe JA, Jiang BH, et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol. 1996;16(9):4604–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shweiki D, Itin A, et al. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 1992;359(6398):843–5.

    Article  CAS  PubMed  Google Scholar 

  35. Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003;9(6):677–84.

    Article  CAS  PubMed  Google Scholar 

  36. Lohela M, Bry M, et al. VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr Opin Cell Biol. 2009;21(2):154–65.

    Article  CAS  PubMed  Google Scholar 

  37. Roskoski R Jr. VEGF receptor protein-tyrosine kinases: structure and regulation. Biochem Biophys Res Commun. 2008;375(3):287–91.

    Article  CAS  PubMed  Google Scholar 

  38. Koch S, Claesson-Welsh L. Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb Perspect Med. 2012;2(7):a006502.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Artini PG, Ruggiero M, et al. Vascular endothelial growth factor and its soluble receptor in benign and malignant ovarian tumors. Biomed Pharmacother. 2008;62(6):373–7.

    Article  CAS  PubMed  Google Scholar 

  40. Pavlakovic H, Becker J, et al. Soluble VEGFR-2: an anti-lymphangiogenic variant of VEGF receptors. Ann N Y Acad Sci. 2010;1207(Suppl 1):E7–15.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wu FT, Stefanini MO, et al. A systems biology perspective on sVEGFR1: its biological function, pathogenic role and therapeutic use. J Cell Mol Med. 2010;14(3):528–52.

    CAS  PubMed  Google Scholar 

  42. Kumasawa K, Ikawa M, et al. Pravastatin induces placental growth factor (PGF) and ameliorates preeclampsia in a mouse model. Proc Natl Acad Sci USA. 2011;108(4):1451–5.

    Article  CAS  PubMed  Google Scholar 

  43. Albertsen HMCR, Ward K. Endometriosis GWAS Replicate Association Near the Kinase Insert Domain Receptor Gene (KDR); 2017 18 May 2017; Vancouver, CA.

    Google Scholar 

  44. Steinthorsdottir V, Thorleifsson G, et al. Common variants upstream of KDR encoding VEGFR2 and in TTC39B associate with endometriosis. Nat Commun. 2016;7:12350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Salmeron K, Aihara T, et al. IL-1alpha induces angiogenesis in brain endothelial cells in vitro: implications for brain angiogenesis after acute injury. J Neurochem. 2016;136(3):573–80.

    Article  CAS  PubMed  Google Scholar 

  46. Aguilo F, Zhou MM, et al. Long noncoding RNA, polycomb, and the ghosts haunting INK4b-ARF-INK4a expression. Cancer Res. 2011;71(16):5365–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Traves PG, Luque A, et al. Macrophages, inflammation, and tumor suppressors: ARF, a new player in the game. Mediat Inflamm. 2012;2012:568783.

    Article  CAS  Google Scholar 

  48. Zerrouqi A, Pyrzynska B, et al. P14ARF inhibits human glioblastoma-induced angiogenesis by upregulating the expression of TIMP3. J Clin Invest. 2012;122(4):1283–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Burd CE, Jeck WR, et al. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet. 2010;6(12):e1001233.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Yoshino S, Cilluffo R, et al. Single nucleotide polymorphisms associated with abnormal coronary microvascular function. Coron Artery Dis. 2014;25(4):281–9.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Nanda V, Downing KP, et al. CDKN2B regulates TGFbeta signaling and smooth muscle cell investment of hypoxic neovessels. Circ Res. 2016;118(2):230–40.

    Article  CAS  PubMed  Google Scholar 

  52. Pankov R, Yamada KM. Fibronectin at a glance. J Cell Sci. 2002;115(Pt 20):3861–3.

    Article  CAS  PubMed  Google Scholar 

  53. Kuzontkoski PM, Mulligan-Kehoe MJ, et al. Inhibitor of DNA binding-4 promotes angiogenesis and growth of glioblastoma multiforme by elevating matrix GLA levels. Oncogene. 2010;29(26):3793–802.

    Article  CAS  PubMed  Google Scholar 

  54. Martini M, Cenci T, et al. Epigenetic silencing of Id4 identifies a glioblastoma subgroup with a better prognosis as a consequence of an inhibition of angiogenesis. Cancer. 2013;119(5):1004–12.

    Article  CAS  PubMed  Google Scholar 

  55. Nio-Kobayashi J, Narayanan R, et al. Expression and localization of inhibitor of differentiation (ID) proteins during tissue and vascular remodelling in the human corpus luteum. Mol Hum Reprod. 2013;19(2):82–92.

    Article  CAS  PubMed  Google Scholar 

  56. Powell JE, Fung JN, et al. Endometriosis risk alleles at 1p36.12 act through inverse regulation of CDC42 and LINC00339. Hum Mol Genet. 2016;25(22):5046–58.

    CAS  PubMed  Google Scholar 

  57. Qadir MI, Parveen A, et al. Cdc42: role in cancer management. Chem Biol Drug Des. 2015;86(4):432–9.

    Article  CAS  PubMed  Google Scholar 

  58. Ma J, Xue Y, et al. Role of activated rac1/cdc42 in mediating endothelial cell proliferation and tumor angiogenesis in breast cancer. PLoS One. 2013;8(6):e66275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rogers MS, D'Amato RJ. The effect of genetic diversity on angiogenesis. Exp Cell Res. 2006;312(5):561–74.

    Article  CAS  PubMed  Google Scholar 

  60. Rogers MS, D’Amato RJ (2012) Common polymorphisms in angiogenesis. Cold Spring Harb Perspect Med 2(11).

    Google Scholar 

  61. Li YZ, Wang LJ, et al. Vascular endothelial growth factor gene polymorphisms contribute to the risk of endometriosis: an updated systematic review and meta-analysis of 14 case-control studies. Genet Mol Res. 2013;12(2):1035–44.

    Article  CAS  PubMed  Google Scholar 

  62. Cardoso JV, Abrao MS, et al. Combined effect of vascular endothelial growth factor and its receptor polymorphisms in endometriosis: a case-control study. Eur J Obstet Gynecol Reprod Biol. 2017;209:25–33.

    Article  CAS  PubMed  Google Scholar 

  63. Holt VL, Weiss NS. Recommendations for the design of epidemiologic studies of endometriosis. Epidemiology. 2000;11(6):654–9.

    Article  CAS  PubMed  Google Scholar 

  64. Zondervan KT, Cardon LR, et al. What makes a good case-control study? Design issues for complex traits such as endometriosis. Hum Reprod. 2002;17(6):1415–23.

    Article  PubMed  Google Scholar 

  65. Takehara M, Ueda M, et al. Vascular endothelial growth factor A and C gene expression in endometriosis. Hum Pathol. 2004;35(11):1369–75.

    Article  CAS  PubMed  Google Scholar 

  66. Song WW, Lu H, et al. Expression of vascular endothelial growth factor C and anti-angiogenesis therapy in endometriosis. Int J Clin Exp Pathol. 2014;7(11):7752–9.

    PubMed  PubMed Central  Google Scholar 

  67. Xu H, Zhang T, et al. Vascular endothelial growth factor C is increased in endometrium and promotes endothelial functions, vascular permeability and angiogenesis and growth of endometriosis. Angiogenesis. 2013;16(3):541–51.

    Article  CAS  PubMed  Google Scholar 

  68. Tan CW, Lee YH, et al. (2014) CD26/DPPIV down-regulation in endometrial stromal cell migration in endometriosis. Fertil Steril 102(1): 167–177 e169.

    Google Scholar 

  69. Braza-Boils A, Mari-Alexandre J, et al. MicroRNA expression profile in endometriosis: its relation to angiogenesis and fibrinolytic factors. Hum Reprod. 2014;29(5):978–88.

    Article  CAS  PubMed  Google Scholar 

  70. Meng Q, Sun W, et al. Identification of common mechanisms between endometriosis and ovarian cancer. J Assist Reprod Genet. 2011;28(10):917–23.

    Article  PubMed  PubMed Central  Google Scholar 

  71. van den Berg LL, Crane LM, et al. Analysis of biomarker expression in severe endometriosis and determination of possibilities for targeted intraoperative imaging. Int J Gynaecol Obstet. 2013;121(1):35–40.

    Article  PubMed  CAS  Google Scholar 

  72. Di Carlo C, Bonifacio M, et al. Metalloproteinases, vascular endothelial growth factor, and angiopoietin 1 and 2 in eutopic and ectopic endometrium. Fertil Steril. 2009;91(6):2315–23.

    Article  PubMed  CAS  Google Scholar 

  73. Machado DE, Abrao MS, et al. Vascular density and distribution of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 (Flk-1) are significantly higher in patients with deeply infiltrating endometriosis affecting the rectum. Fertil Steril. 2008;90(1):148–55.

    Article  CAS  PubMed  Google Scholar 

  74. Ramon LA, Braza-Boils A, et al. microRNAs expression in endometriosis and their relation to angiogenic factors. Hum Reprod. 2011;26(5):1082–90.

    Article  CAS  PubMed  Google Scholar 

  75. Bourlev V, Volkov N, et al. The relationship between microvessel density, proliferative activity and expression of vascular endothelial growth factor-A and its receptors in eutopic endometrium and endometriotic lesions. Reproduction. 2006;132(3):501–9.

    Article  CAS  PubMed  Google Scholar 

  76. Gilabert-Estelles J, Ramon LA, et al. Expression of angiogenic factors in endometriosis: relationship to fibrinolytic and metalloproteinase systems. Hum Reprod. 2007;22(8):2120–7.

    Article  CAS  PubMed  Google Scholar 

  77. Oliveira VA, Abreu LG, et al. Vascular endothelial growth factor in the plasma, follicular fluid and granulosa cells of women with endometriosis submitted to in vitro fertilization – a pilot study. Gynecol Endocrinol. 2005;20(5):284–8.

    Article  CAS  PubMed  Google Scholar 

  78. Takehara M, Ueda M, et al. Vascular endothelial growth factor A and C gene expression in endometriosis. Hum Pathol. 2004;35(11):1369–75..

    Google Scholar 

  79. Tan XJ, Lang JH, et al. Expression of vascular endothelial growth factor and thrombospondin-1 mRNA in patients with endometriosis. Fertil Steril. 2002;78(1):148–53.

    Article  PubMed  Google Scholar 

  80. Zhang L, Xiong W, et al. 17 β-Estradiol promotes vascular endothelial growth factor expression via the Wnt/β-catenin pathway during the pathogenesis of endometriosis. Mol Hum Reprod. 2016;22(7):526–35.

    Article  CAS  PubMed  Google Scholar 

  81. Fujishita A, Hasuo A, et al. Immunohistochemical study of angiogenic factors in endometrium and endometriosis. Gynecol Obstet Investig. 1999;48(Suppl 1):36–44.

    Article  CAS  Google Scholar 

  82. Mueller MD, Vigne JL, et al. Regulation of vascular endothelial growth factor (VEGF) gene transcription by estrogen receptors alpha and beta. Proc Natl Acad Sci USA. 2000;97(20):10972–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kupker W. Paracrine changes in the peritoneal environment of women with endometriosis. Hum Reprod Update. 1998;4(5):719–23.

    Article  CAS  PubMed  Google Scholar 

  84. Na YJ, Yang SH, et al. Effects of peritoneal fluid from endometriosis patients on the release of vascular endothelial growth factor by neutrophils and monocytes. Hum Reprod. 2006;21(7):1846–55.

    Article  CAS  PubMed  Google Scholar 

  85. Braza-Boils A, Gilabert-Estelles J, et al. Peritoneal fluid reduces angiogenesis-related microRNA expression in cell cultures of endometrial and endometriotic tissues from women with endometriosis. PLoS One. 2013;8(4):e62370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang HB, Lang JH, et al. Expression of vascular endothelial growth factor receptors in the ectopic and eutopic endometrium of women with endometriosis. Zhonghua Yi Xue Za Zhi. 2005;85(22):1555–9.

    CAS  PubMed  Google Scholar 

  87. Martin DC. Laparoscopic appearance of endometriosis. 2nd ed. Resurge Press; 2017.

    Google Scholar 

  88. Nisolle M, Casanas-Roux F, et al. Morphometric study of the stromal vascularization in peritoneal endometriosis. Fertil Steril. 1993;59(3):681–4.

    Article  CAS  PubMed  Google Scholar 

  89. Khan KN, Masuzaki H, et al. Higher activity by opaque endometriotic lesions than nonopaque lesions. Acta Obstet Gynecol Scand. 2004;83(4):375–82.

    Article  PubMed  Google Scholar 

  90. Donnez J, Smoes P, et al. Vascular endothelial growth factor (VEGF) in endometriosis. Hum Reprod. 1998;13(6):1686–90.

    Article  CAS  PubMed  Google Scholar 

  91. Zhao L, Gu C, et al. Identification of global transcriptome abnormalities and potential biomarkers in eutopic endometria of women with endometriosis: A preliminary study. Biomed Rep. 2017;6(6):654–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Print C, Valtola R, et al. Soluble factors from human endometrium promote angiogenesis and regulate the endothelial cell transcriptome. Hum Reprod. 2004;19(10):2356–66.

    Article  CAS  PubMed  Google Scholar 

  93. Sharkey AM, Day K, et al. Vascular endothelial growth factor expression in human endometrium is regulated by hypoxia. J Clin Endocrinol Metab. 2000;85(1):402–9.

    CAS  PubMed  Google Scholar 

  94. Vodolazkaia A, El-Aalamat Y, et al. Evaluation of a panel of 28 biomarkers for the non-invasive diagnosis of endometriosis. Hum Reprod. 2012;27(9):2698–711.

    Article  CAS  PubMed  Google Scholar 

  95. Vodolazkaia A, Yesilyurt BT, et al. Vascular endothelial growth factor pathway in endometriosis: genetic variants and plasma biomarkers. Fertil Steril. 2016;105(4):988–96.

    Article  CAS  PubMed  Google Scholar 

  96. Kalu E, Sumar N, et al. Cytokine profiles in serum and peritoneal fluid from infertile women with and without endometriosis. J Obstet Gynaecol Res. 2007;33(4):490–5.

    Article  CAS  PubMed  Google Scholar 

  97. Kianpour M, Nematbakhsh M, et al. Serum and peritoneal fluid levels of vascular endothelial growth factor in women with endometriosis. Int J Fertil Steril. 2013;7(2):96–9.

    PubMed  PubMed Central  Google Scholar 

  98. Pupo-Nogueira A, de Oliveira RM, et al. Vascular endothelial growth factor concentrations in the serum and peritoneal fluid of women with endometriosis. Int J Gynaecol Obstet. 2007;99(1):33–7.

    Article  CAS  PubMed  Google Scholar 

  99. Gagne D, Page M, et al. Levels of vascular endothelial growth factor (VEGF) in serum of patients with endometriosis. Hum Reprod. 2003;18(8):1674–80.

    Article  CAS  PubMed  Google Scholar 

  100. Kim JG, Kim JY, et al. Association between endometriosis and polymorphisms in endostatin and vascular endothelial growth factor and their serum levels in Korean women. Fertil Steril. 2008;89(1):243–5.

    Article  CAS  PubMed  Google Scholar 

  101. Othman Eel D, Hornung D, et al. Serum cytokines as biomarkers for nonsurgical prediction of endometriosis. Eur J Obstet Gynecol Reprod Biol. 2008;137(2):240–6.

    Article  CAS  Google Scholar 

  102. Gogacz M, Gałczyński K, et al. Concentration of selected angiogenic factors in serum and peritoneal fluid of women with endometriosis. Polish Gynaecol. 2015;86(3):188–92.

    Google Scholar 

  103. Bourlev V, Iljasova N, et al. Signs of reduced angiogenic activity after surgical removal of deeply infiltrating endometriosis. Fertil Steril. 2010;94(1):52–7.

    Article  CAS  PubMed  Google Scholar 

  104. Wang H, Gorpudolo N, et al. Elevated vascular endothelia growth factor-A in the serum and peritoneal fluid of patients with endometriosis. J Huazhong Univ Sci Technolog Med Sci. 2009;29(5):637–41.

    Article  CAS  PubMed  Google Scholar 

  105. Xavier P, Belo L, et al. Serum levels of VEGF and TNF-alpha and their association with C-reactive protein in patients with endometriosis. Arch Gynecol Obstet. 2006;273(4):227–31.

    Article  CAS  PubMed  Google Scholar 

  106. Kopuz A, Kurt S, et al. Relation of peritoneal fluid and serum vascular endothelial growth factor levels to endometriosis stage. Clin Exp Obstet Gynecol. 2014;41(5):547–50.

    Article  CAS  PubMed  Google Scholar 

  107. Mohamed ML, El Behery MM, et al. Comparative study between VEGF-A and CA-125 in diagnosis and follow-up of advanced endometriosis after conservative laparoscopic surgery. Arch Gynecol Obstet. 2013;287(1):77–82.

    Article  CAS  PubMed  Google Scholar 

  108. Khan KN, Masuzaki H, et al. Immunoexpression of hepatocyte growth factor and c-Met receptor in the eutopic endometrium predicts the activity of ectopic endometrium. Fertil Steril. 2003;79(1):173–81.

    Article  PubMed  Google Scholar 

  109. Fasciani A, D’Ambrogio G, et al. (2001) Vascular endothelial growth factor and interleukin-8 in ovarian cystic pathology. Fertil Steril 75.

    Google Scholar 

  110. Rakhila H, Al-Akoum M, et al. Augmented angiogenic factors expression via FP signaling pathways in peritoneal endometriosis. J Clin Endocrinol Metabol. 2016;101(12):4752–63.

    Article  CAS  Google Scholar 

  111. Yerlikaya G, Balendran S, et al. Comprehensive study of angiogenic factors in women with endometriosis compared to women without endometriosis. Eur J Obst Gynecol Reprod Biol. 2016;204:88–98.

    Article  CAS  Google Scholar 

  112. Lin SC, Lee HC, et al. Targeting anthrax toxin receptor 2 ameliorates endometriosis progression. Theranostics. 2019;9(3):620–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rogers MS, Christensen KA, et al. Mutant anthrax toxin B moiety (protective antigen) inhibits angiogenesis and tumor growth. Cancer Res. 2007;67(20):9980–5.

    Article  CAS  PubMed  Google Scholar 

  114. Cryan LM, Bazinet L, et al. 1,2,3,4,6-Penta-O-galloyl-beta-d-glucopyranose inhibits angiogenesis via inhibition of capillary morphogenesis gene 2. J Med Chem. 2013;56(5):1940–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Vallve-Juanico J, Houshdaran S, et al. (2019) The endometrial immune environment of women with endometriosis. Hum Reprod Update 25.

    Google Scholar 

  116. Riccio LDGC, Santulli P, et al. (2018) Immunology of endometriosis. Best Pract Res Clin Obstet Gynaecol 50.

    Google Scholar 

  117. Symons LK, Miller JE, et al. (2018) The immunopathophysiology of endometriosis. Trends Mol Med 24.

    Google Scholar 

  118. González-Foruria I, Santulli P, et al. (2015) Soluble ligands for the NKG2D receptor are released during endometriosis and correlate with disease severity. PLoS One 10.

    Google Scholar 

  119. Shen P, Fillatreau S (2015) Antibody-independent functions of B cells: a focus on cytokines. Nat Rev Immunol 15.

    Google Scholar 

  120. Lang GA, Yeaman GR. Autoantibodies in endometriosis sera recognize a Thomsen-Friedenreich-like carbohydrate antigen. J Autoimmun. 2001;16(2):151–61.

    Article  CAS  PubMed  Google Scholar 

  121. Beste MT, Pfaffle-Doyle N, et al. Molecular network analysis of endometriosis reveals a role for c-Jun-regulated macrophage activation. Sci Transl Med. 2014;6(222):222ra216.

    Article  CAS  Google Scholar 

  122. Aslan C, Ak H, et al. Overexpression of complement C5 in endometriosis. Clin Biochem. 2014;47(6):496–8.

    Article  PubMed  Google Scholar 

  123. Darai E, Detchev R, et al. (2003) Serum and cyst fluid levels of interleukin (IL) -6, IL-8 and tumour necrosis factor-alpha in women with endometriomas and benign and malignant cystic ovarian tumours. Hum Reprod 18.

    Google Scholar 

  124. Schroder W, Ruppert C, et al. (1994) Concomitant measurements of interleukin-6 (IL-6) in serum and peritoneal fluid of patients with benign and malignant ovarian tumors. Eur J Obstet Gynecol Reprod Biol 56.

    Google Scholar 

  125. Sipak-Szmigiel O, Wlodarski P, et al. (2017) Serum and peritoneal fluid concentrations of soluble human leukocyte antigen, tumor necrosis factor alpha and interleukin 10 in patients with selected ovarian pathologies. J Ovarian Res 10.

    Google Scholar 

  126. Mach P, Blecharz P, et al. (2010) Differences in the soluble HLA-G blood serum concentration levels in patients with ovarian cancer and ovarian and deep endometriosis. Am J Reprod Immunol 63.

    Google Scholar 

  127. Liu L, Wang L, et al. The role of HLA-G in tumor escape: manipulating the phenotype and function of immune cells. Front Oncol. 2020;10:597468.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Furuya M, Suyama T, et al. (2007) Up-regulation of CXC chemokines and their receptors: implications for proinflammatory microenvironments of ovarian carcinomas and endometriosis. Hum Pathol 38.

    Google Scholar 

  129. Furuya M, Yoneyama T, et al. (2011) Differential expression patterns of CXCR3 variants and corresponding CXC chemokines in clear cell ovarian cancers and endometriosis. Gynecol Oncol 122.

    Google Scholar 

  130. Furuya M, Tanaka R, et al. (2012) Impaired CXCL4 expression in tumor-associated macrophages (TAMs) of ovarian cancers arising in endometriosis. Cancer Biol Ther 13.

    Google Scholar 

  131. Fedele L, Parazzini F, et al. Stage and localization of pelvic endometriosis and pain. Fertil Steril. 1990;53(1):155–8.

    Article  CAS  PubMed  Google Scholar 

  132. Adamson GD. Diagnosis and clinical presentation of endometriosis. Am J Obstet Gynecol. 1990;162(2):568–9.

    Article  CAS  PubMed  Google Scholar 

  133. He W, Liu X, et al. Generalized hyperalgesia in women with endometriosis and its resolution following a successful surgery. Reprod Sci. 2010;17(12):1099–111.

    Article  PubMed  Google Scholar 

  134. Bajaj P, Bajaj P, et al. Endometriosis is associated with central sensitization: a psychophysical controlled study. J Pain. 2003;4(7):372–80.

    Article  PubMed  Google Scholar 

  135. Morotti M, Vincent K, et al. Mechanisms of pain in endometriosis. Eur J Obstet Gynecol Reprod Biol. 2017;209:8–13.

    Article  PubMed  Google Scholar 

  136. Mowers EL, Lim CS, et al. Prevalence of endometriosis during abdominal or laparoscopic hysterectomy for chronic pelvic pain. Obstet Gynecol. 2016;127(6):1045–53.

    Article  PubMed  Google Scholar 

  137. Zhang G, Dmitrieva N, et al. Endometriosis as a neurovascular condition: estrous variations in innervation, vascularization, and growth factor content of ectopic endometrial cysts in the rat. Am J Physiol Regul Integr Comp Physiol. 2008;294(1):R162–71.

    Article  CAS  PubMed  Google Scholar 

  138. Berkley KJ, Dmitrieva N, et al. Innervation of ectopic endometrium in a rat model of endometriosis. Proc Natl Acad Sci. 2004;101(30):11094–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Rocha MG, e Silva JC, et al. TRPV1 expression on peritoneal endometriosis foci is associated with chronic pelvic pain. Reprod Sci. 2011;18(6):511–5.

    Article  CAS  PubMed  Google Scholar 

  140. Poli-Neto OB, Filho AA, et al. Increased capsaicin receptor TRPV1 in the peritoneum of women with chronic pelvic pain. Clin J Pain. 2009;25(3):218–22.

    Article  PubMed  Google Scholar 

  141. Tokushige N, Markham R, et al. Nerve fibres in peritoneal endometriosis. Hum Reprod. 2006;21(11):3001–7.

    Article  CAS  PubMed  Google Scholar 

  142. Tokushige N, Markham R, et al. High density of small nerve fibres in the functional layer of the endometrium in women with endometriosis. Hum Reprod. 2006;21(3):782–7.

    Article  CAS  PubMed  Google Scholar 

  143. García-Manero M, Alcazar JL, et al. Vascular endothelial growth factor (VEGF) and ovarian endometriosis: correlation between VEGF serum levels, VEGF cellular expression, and pelvic pain. Fertil Steril. 2007;88(2):513–5.

    Article  PubMed  Google Scholar 

  144. Garcia-Manero M, Santana GT, et al. Relationship between microvascular density and expression of vascular endothelial growth factor in patients with ovarian endometriosis. J Womens Health (Larchmt). 2008;17(5):777–82.

    Article  Google Scholar 

  145. Serhan CN, Levy BD. Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators. J Clin Invest. 2018;128(7):2657–69.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Zondervan KT, Becker CM, et al. Endometriosis. N Engl J Med. 2020;382(13):1244–56.

    Article  CAS  PubMed  Google Scholar 

  147. Shih T, Lindley C. Bevacizumab: an angiogenesis inhibitor for the treatment of solid malignancies. Clin Ther. 2006;28(11):1779–802.

    Article  CAS  PubMed  Google Scholar 

  148. Cook KM, Figg WD. Angiogenesis inhibitors: current strategies and future prospects. CA Cancer J Clin. 2010;60(4):222–43.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Chang J-H, Garg NK, et al. Corneal neovascularization: an anti-VEGF therapy review. Surv Ophthalmol. 2012;57(5):415–29.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Cho SH, Oh YJ, et al. Evaluation of serum and urinary angiogenic factors in patients with endometriosis. Am J Reprod Immunol. 2007;58(6):497–504.

    Article  CAS  PubMed  Google Scholar 

  151. Hull ML, Charnock-Jones DS, et al. Antiangiogenic agents are effective inhibitors of endometriosis. J Clin Endocrinol Metab. 2003;88(6):2889–99.

    Article  CAS  PubMed  Google Scholar 

  152. Matalliotakis IM, Goumenou AG, et al. Serum concentrations of growth factors in women with and without endometriosis: the action of anti-endometriosis medicines. Int Immunopharmacol. 2003;3(1):81–9.

    Article  CAS  PubMed  Google Scholar 

  153. Bilotas M, Meresman G, et al. Effect of vascular endothelial growth factor and interleukin-1beta on apoptosis in endometrial cell cultures from patients with endometriosis and controls. J Reprod Immunol. 2010;84(2):193–8.

    Article  CAS  PubMed  Google Scholar 

  154. Tesone M, Bilotas M, et al. The role of GnRH analogues in endometriosis-associated apoptosis and angiogenesis. Gynecol Obstet Investig. 2008;66(Suppl 1):10–8.

    Article  CAS  Google Scholar 

  155. Huang F, Wang H, et al. Effect of GnRH-II on the ESC proliferation, apoptosis and VEGF secretion in patients with endometriosis in vitro. Int J Clin Exp Pathol. 2013;6(11):2487–96.

    PubMed  PubMed Central  Google Scholar 

  156. Meresman GF, Bilotas MA, et al. Effect of GnRH analogues on apoptosis and release of interleukin-1beta and vascular endothelial growth factor in endometrial cell cultures from patients with endometriosis. Hum Reprod. 2003;18(9):1767–71.

    Article  CAS  PubMed  Google Scholar 

  157. Dogan E, Saygili U, et al. Regression of endometrial explants in rats treated with the cyclooxygenase-2 inhibitor rofecoxib. Fertil Steril. 2004;82(Suppl 3):1115–20.

    Article  CAS  PubMed  Google Scholar 

  158. Liu S, Xin X, et al. Efficacy of anti-VEGF/VEGFR agents on animal models of endometriosis: a systematic review and meta-analysis. PLoS One. 2016;11(11):e0166658.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Ozer H, Boztosun A, et al. The efficacy of bevacizumab, sorafenib, and retinoic acid on rat endometriosis model. Reprod Sci. 2013;20(1):26–32.

    Article  CAS  PubMed  Google Scholar 

  160. Soysal D, Kızıldağ S, et al. (2014) A novel angiogenesis inhibitor bevacizumab induces apoptosis in the rat endometriosis model. Balkan J Med Genet 17(2).

    Google Scholar 

  161. Ricci AG, Olivares CN, et al. Effect of vascular endothelial growth factor inhibition on endometrial implant development in a murine model of endometriosis. Reprod Sci. 2011;18(7):614–22.

    Article  CAS  PubMed  Google Scholar 

  162. Sevket O, Sevket A, et al. The effects of ranibizumab on surgically induced endometriosis in a rat model: a preliminary study. Reprod Sci. 2013;20(10):1224–9.

    Article  PubMed  CAS  Google Scholar 

  163. Laschke MW, Elitzsch A, et al. Combined inhibition of vascular endothelial growth factor (VEGF), fibroblast growth factor and platelet-derived growth factor, but not inhibition of VEGF alone, effectively suppresses angiogenesis and vessel maturation in endometriotic lesions. Hum Reprod. 2006;21(1):262–8.

    Article  CAS  PubMed  Google Scholar 

  164. Yildiz C, Kacan T, et al. Effects of pazopanib, sunitinib, and sorafenib, anti-VEGF agents, on the growth of experimental endometriosis in rats. Reprod Sci. 2015;22(11):1445–51.

    Article  CAS  PubMed  Google Scholar 

  165. Abbas MA, Disi AM, et al. Sunitinib as an anti-endometriotic agent. Eur J Pharm Sci. 2013;49(4):732–6.

    Article  CAS  PubMed  Google Scholar 

  166. Pala HG, Erbas O, et al. The effects of sunitinib on endometriosis. J Obstet Gynaecol. 2015;35(2):183–7.

    Article  CAS  PubMed  Google Scholar 

  167. Fallon EM, Nehra D, et al. Sunitinib reduces recurrent pelvic adhesions in a rabbit model. J Surg Res. 2012;178(2):860–5.

    Article  CAS  PubMed  Google Scholar 

  168. Meisel JA, Fallon EM, et al. Sunitinib inhibits postoperative adhesions in a rabbit model. Surgery. 2011;150(1):32–8.

    Article  PubMed  Google Scholar 

  169. Kim S, Lee S, et al. Inhibition of intra-abdominal adhesion formation with the angiogenesis inhibitor sunitinib. J Surg Res. 2008;149(1):115–9.

    Article  CAS  PubMed  Google Scholar 

  170. Moggio A, Pittatore G, et al. Sorafenib inhibits growth, migration, and angiogenic potential of ectopic endometrial mesenchymal stem cells derived from patients with endometriosis. Fertil Steril. 2012;98(6):1521–1530 e1522.

    Article  CAS  PubMed  Google Scholar 

  171. Leconte M, Santulli P, et al. Inhibition of MAPK and VEGFR by sorafenib controls the progression of endometriosis. Reprod Sci. 2015;22(9):1171–80.

    Article  CAS  PubMed  Google Scholar 

  172. Mir O, Ropert S, et al. Clinical activity of sunitinib and regorafenib in endometriosis. Mayo Clin Proc. 2019;94(12):2591–3.

    Article  PubMed  Google Scholar 

  173. Basu S, Nagy JA, et al. The neurotransmitter dopamine inhibits angiogenesis induced by vascular permeability factor/vascular endothelial growth factor. Nat Med. 2001;7(5):569–74.

    Article  CAS  PubMed  Google Scholar 

  174. Novella-Maestre E, Carda C, et al. Identification and quantification of dopamine receptor 2 in human eutopic and ectopic endometrium: a novel molecular target for endometriosis therapy. Biol Reprod. 2010;83(5):866–73.

    Article  CAS  PubMed  Google Scholar 

  175. Delgado-Rosas F, Gomez R, et al. The effects of ergot and non-ergot-derived dopamine agonists in an experimental mouse model of endometriosis. Reproduction. 2011;142(5):745–55.

    Article  CAS  PubMed  Google Scholar 

  176. Novella-Maestre E, Carda C, et al. Dopamine agonist administration causes a reduction in endometrial implants through modulation of angiogenesis in experimentally induced endometriosis. Hum Reprod. 2009;24(5):1025–35.

    Article  CAS  PubMed  Google Scholar 

  177. Gomez R, Abad A, et al. Effects of hyperprolactinemia treatment with the dopamine agonist quinagolide on endometriotic lesions in patients with endometriosis-associated hyperprolactinemia. Fertil Steril. 2011;95(3):882–888 e881.

    Article  CAS  PubMed  Google Scholar 

  178. Nakamura DS, Edwards AK, et al. Thrombospondin-1 mimetic peptide ABT-898 affects neovascularization and survival of human endometriotic lesions in a mouse model. Am J Pathol. 2012;181(2):570–82.

    Article  CAS  PubMed  Google Scholar 

  179. Nakamura DS, Edwards AK, et al. Compatibility of a novel thrombospondin-1 analog with fertility and pregnancy in a xenograft mouse model of endometriosis. PLoS One. 2015;10(3):e0121545.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Rogers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rogers, M.S. (2022). The Role of the Microenvironment in Endometriosis: Parallels and Distinctions to Cancer. In: Akslen, L.A., Watnick, R.S. (eds) Biomarkers of the Tumor Microenvironment. Springer, Cham. https://doi.org/10.1007/978-3-030-98950-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98950-7_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98949-1

  • Online ISBN: 978-3-030-98950-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics