Skip to main content

Tissue-Based Biomarkers of Tumor-Vascular Interactions

  • Chapter
  • First Online:
Biomarkers of the Tumor Microenvironment
  • 1435 Accesses

Abstract

The vascular systems are key components of the tumor microenvironment and angiogenesis is recognized as a hallmark of cancer. Although studies have indicated that the prognosis of certain cancer patients might be improved by targeting tumor-associated blood vessels, there is a lack of markers that can predict the clinical response to such anti-tumor therapy and thereby stratify patients for optimal management. Microvessel density (MVD) and other angiogenesis markers are known to be effective prognostic factors, but information on response prediction is virtually lacking. In addition to the use of novel endothelial proteins and markers for improved tumor imaging and targeting strategies, the potential practical value of selected histologic indicators for better stratification and predictive purposes needs to be more deeply explored and validated in future studies.

Tumor-associated vessels are unevenly distributed with variation in diameter and shape. They show increased endothelial proliferation (e.g., by Ki67 expression) and are more immature with decreased pericyte coverage. These atypical vessels are more prone to invasion by tumor cells as an early marker of vascular dissemination

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285(21):1182–6.

    Article  CAS  PubMed  Google Scholar 

  2. Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003;9(6):653–60.

    Article  CAS  PubMed  Google Scholar 

  3. Carmeliet P. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473(7347):298–307.

    Google Scholar 

  4. Kerbel RS. Tumor angiogenesis. N Engl J Med. 2008;358(19):2039–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yancopoulos GD, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular specific growth factors and blood vessel formation. Nature. 2000;407(6801):242–8.

    Google Scholar 

  6. Lyden D, Dias S, Costa C, Blaikie P, Butros L. Impaired recruitment of bone marrow derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med. 2001;7(11):1194–201.

    Google Scholar 

  7. Kaplan RN, Zacharoulis S, Bramley AH, Vincent L, Costa C. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 2005;438(7069):820–7.

    Google Scholar 

  8. Hurwitz H, Novotny W, Cartwright T, Hainsworth J, Heim W. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350(23):2335–42.

    Google Scholar 

  9. Jain RK, Clark JW, Loeffler JS. Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol. 2006;3(1):24–40.

    Google Scholar 

  10. Potente M, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell. 2011;146(6):873–87.

    Google Scholar 

  11. Paulsen T, Borresen AL, Varhaug JE, Lonning PE, Akslen LA. Angiogenesis does not predict clinical response to doxorubicin monotherapy in patients with locally advanced breast cancer. Int J Cancer. 1997;74(1):138–40.

    Google Scholar 

  12. Tynninen O, von Boguslawski K, Bengtsson NO, Heikkila R, Malmstrom P. Tumor microvessel density as predictor of chemotherapy response in breast cancer patients. Br J Cancer. 2002;86(12):1905–8.

    Google Scholar 

  13. Jubb AM, Hurwitz HI, Bai W, Holmgren EB, Tobin P, Guerrero AS, et al. Impact of vascular endothelial growth factor-A expression, thrombospondin-2 expression, and microvessel density on the treatment effect of bevacizumab in metastatic colorectal cancer. J Clin Oncol. 2006;24(2):217–27.

    Article  CAS  PubMed  Google Scholar 

  14. Lambrechts D, Lenz HJ, de Haas S, Carmeliet P, Scherer SJ. Markers of response for the antiangiogenic agent bevacizumab. J Clin Oncol. 2013;31(9):1219–30.

    Article  CAS  PubMed  Google Scholar 

  15. Akslen LA, Straume O, Geisler S, Sorlie T, Chi JT, Aas T, et al. Glomeruloid microvascular proliferation is associated with lack of response to chemotherapy in breast cancer. Br J Cancer. 2011;105(1):9–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bergsland EK. When does the presence of the target predict response to the targeted agent? J Clin Oncol. 2006;24(2):213–6.

    Article  CAS  PubMed  Google Scholar 

  17. Brem S, Cotran R, Folkman J. Tumor angiogenesis: a quantitative method for histologic grading. J Natl Cancer Inst. 1972;48(2):347–56.

    CAS  PubMed  Google Scholar 

  18. Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis--correlation in invasive breast carcinoma. N Engl J Med. 1991;324(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  19. Hlatky L, Hahnfeldt P, Folkman J. Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn't tell us. J Natl Cancer Inst. 2002;94(12):883–93.

    Article  PubMed  Google Scholar 

  20. Vartanian RK, Weidner N. Correlation of intratumoral endothelial cell proliferation with microvessel density (tumor angiogenesis) and tumor cell proliferation in breast carcinoma. Am J Pathol. 1994;144(6):1188–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Vermeulen PB, Verhoeven D, Hubens G, Van Marck E, Goovaerts G, Huyghe M, et al. Microvessel density, endothelial cell proliferation and tumour cell proliferation in human colorectal adenocarcinomas. Ann Oncol. 1995;6(1):59–64.

    Article  CAS  PubMed  Google Scholar 

  22. Prall F, Gringmuth U, Nizze H, Barten M. Microvessel densities and microvascular architecture in colorectal carcinomas and their liver metastases: significant correlation of high microvessel densities with better survival. Histopathology. 2003;42(5):482–91.

    Article  CAS  PubMed  Google Scholar 

  23. Ramnefjell M, Aamelfot C, Aziz S, Helgeland L, Akslen LA. Microvascular proliferation is associated with aggressive tumour features and reduced survival in lung adenocarcinoma. J Pathol Clin Res. 2017;3(4):249–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stefansson IM, Salvesen HB, Akslen LA. Vascular proliferation is important for clinical progress of endometrial cancer. Cancer Res. 2006;66(6):3303–9.

    Article  CAS  PubMed  Google Scholar 

  25. Eberhard A, Kahlert S, Goede V, Hemmerlein B, Plate KH, Augustin HG. Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res. 2000;60(5):1388–93.

    CAS  PubMed  Google Scholar 

  26. Mezheyeuski A, Bradic Lindh M, Guren TK, Dragomir A, Pfeiffer P, Kure EH, et al. Survival-associated heterogeneity of marker-defined perivascular cells in colorectal cancer. Oncotarget. 2016;7(27):41948–58.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dvorak HF. Rous-Whipple Award Lecture. How tumors make bad blood vessels and stroma. Am J Pathol. 2003;162(6):1747–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dvorak HF. Tumor Stroma, Tumor Blood Vessels, and Antiangiogenesis Therapy. Cancer J. 2015;21(4):237–43.

    Article  CAS  PubMed  Google Scholar 

  29. Straume O, Chappuis PO, Salvesen HB, Halvorsen OJ, Haukaas SA, Goffin JR, et al. Prognostic importance of glomeruloid microvascular proliferation indicates an aggressive angiogenic phenotype in human cancers. Cancer Res. 2002;62(23):6808–11.

    CAS  PubMed  Google Scholar 

  30. Mannelqvist M, Stefansson I, Salvesen HB, Akslen LA. Importance of tumour cell invasion in blood and lymphatic vasculature among patients with endometrial carcinoma. Histopathology. 2009;54(2):174–83.

    Article  PubMed  Google Scholar 

  31. Mohammed RA, Ellis IO, Mahmmod AM, Hawkes EC, Green AR, Rakha EA, et al. Lymphatic and blood vessels in basal and triple-negative breast cancers: characteristics and prognostic significance. Mod Pathol. 2011;24(6):774–85.

    Article  CAS  PubMed  Google Scholar 

  32. Klingen TA, Chen Y, Stefansson IM, Knutsvik G, Collett K, Abrahamsen AL, et al. Tumour cell invasion into blood vessels is significantly related to breast cancer subtypes and decreased survival. J Clin Pathol. 2017;70(4):313–9.

    Article  CAS  PubMed  Google Scholar 

  33. Ramnefjell M, Aamelfot C, Helgeland L, Akslen LA. Vascular invasion is an adverse prognostic factor in resected non-small-cell lung cancer. APMIS. 2017;125(3):197–206.

    Article  CAS  PubMed  Google Scholar 

  34. Mohme M, Riethdorf S, Pantel K. Circulating and disseminated tumour cells - mechanisms of immune surveillance and escape. Nat Rev Clin Oncol. 2017;14(3):155–67.

    Article  CAS  PubMed  Google Scholar 

  35. Srivastava A, Laidler P, Davies RP, Horgan K, Hughes LE. The prognostic significance of tumor vascularity in intermediate-thickness (0.76-4.0 mm thick) skin melanoma. A quantitative histologic study. Am J Pathol. 1988;133(2):419–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Weidner N, Folkman J, Pozza F, Bevilacqua P, Allred EN, Moore DH, et al. Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst. 1992;84(24):1875–87.

    Article  CAS  PubMed  Google Scholar 

  37. Salvesen HB, Iversen OE, Akslen LA. Independent prognostic importance of microvessel density in endometrial carcinoma. Br J Cancer. 1998;77(7):1140–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Straume O, Salvesen HB, Akslen LA. Angiogenesis is prognostically important in vertical growth phase melanomas. Int J Oncol. 1999;15(3):595–9.

    CAS  PubMed  Google Scholar 

  39. Weidner N, Carroll PR, Flax J, Blumenfeld W, Folkman J. Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol. 1993;143(2):401–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Halvorsen OJ, Haukaas S, Hoisaeter PA, Akslen LA. Independent prognostic importance of microvessel density in clinically localized prostate cancer. Anticancer Res. 2000;20(5C):3791–9.

    CAS  PubMed  Google Scholar 

  41. Axelsson K, Ljung BM, Moore DH 2nd, Thor AD, Chew KL, Edgerton SM, et al. Tumor angiogenesis as a prognostic assay for invasive ductal breast carcinoma. J Natl Cancer Inst. 1995;87(13):997–1008.

    Article  CAS  PubMed  Google Scholar 

  42. Uzzan B, Nicolas P, Cucherat M, Perret GY. Microvessel density as a prognostic factor in women with breast cancer: a systematic review of the literature and meta-analysis. Cancer Res. 2004;64(9):2941–55.

    Article  CAS  PubMed  Google Scholar 

  43. Belien JA, Somi S, de Jong JS, van Diest PJ, Baak JP. Fully automated microvessel counting and hot spot selection by image processing of whole tumour sections in invasive breast cancer. J Clin Pathol. 1999;52(3):184–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vermeulen PB, Gasparini G, Fox SB, Colpaert C, Marson LP, Gion M, et al. Second international consensus on the methodology and criteria of evaluation of angiogenesis quantification in solid human tumours. Eur J Cancer. 2002;38(12):1564–79.

    Article  CAS  PubMed  Google Scholar 

  45. Fox SB, Harris AL. Histological quantitation of tumour angiogenesis. APMIS. 2004;112(7-8):413–30.

    Article  PubMed  Google Scholar 

  46. de Jong JS, van Diest PJ, Baak JP. Heterogeneity and reproducibility of microvessel counts in breast cancer. Lab Invest. 1995;73(6):922–6.

    PubMed  Google Scholar 

  47. Tolaney SM, Boucher Y, Duda DG, Martin JD, Seano G, Ancukiewicz M, et al. Role of vascular density and normalization in response to neoadjuvant bevacizumab and chemotherapy in breast cancer patients. Proc Natl Acad Sci U S A. 2015;112(46):14325–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kruger K, Silwal-Pandit L, Wik E, Straume O, Stefansson IM, Borgen E, et al. Baseline microvessel density predicts response to neoadjuvant bevacizumab treatment of locally advanced breast cancer. Sci Rep. 2021;11(1):3388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mezheyeuski A, Hrynchyk I, Herrera M, Karlberg M, Osterman E, Ragnhammar P, et al. Stroma-normalised vessel density predicts benefit from adjuvant fluorouracil-based chemotherapy in patients with stage II/III colon cancer. Br J Cancer. 2019;121(4):303–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Corvigno S, Frodin M, Wisman GBA, Nijman HW, Van der Zee AG, Jirstrom K, et al. Multi-parametric profiling of renal cell, colorectal, and ovarian cancer identifies tumour-type-specific stroma phenotypes and a novel vascular biomarker. J Pathol Clin Res. 2017;3(3):214–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fox SB, Gatter KC, Bicknell R, Going JJ, Stanton P, Cooke TG, et al. Relationship of endothelial cell proliferation to tumor vascularity in human breast cancer. Cancer Res. 1993;53(18):4161–3.

    CAS  PubMed  Google Scholar 

  52. Vartanian RK, Weidner N. Endothelial cell proliferation in prostatic carcinoma and prostatic hyperplasia: correlation with Gleason's score, microvessel density, and epithelial cell proliferation. Lab Invest. 1995;73(6):844–50.

    CAS  PubMed  Google Scholar 

  53. Colpaert CG, Vermeulen PB, Benoy I, Soubry A, van Roy F, van Beest P, et al. Inflammatory breast cancer shows angiogenesis with high endothelial proliferation rate and strong E-cadherin expression. Br J Cancer. 2003;88(5):718–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Arnes JB, Stefansson IM, Straume O, Baak JP, Lonning PE, Foulkes WD, et al. Vascular proliferation is a prognostic factor in breast cancer. Breast Cancer Res Treat. 2012;133(2):501–10.

    Article  CAS  PubMed  Google Scholar 

  55. Nalwoga H, Arnes JB, Stefansson IM, Wabinga H, Foulkes WD, Akslen LA. Vascular proliferation is increased in basal-like breast cancer. Breast Cancer Res Treat. 2011;130(3):1063–71.

    Article  PubMed  Google Scholar 

  56. Kraby MR, Kruger K, Opdahl S, Vatten LJ, Akslen LA, Bofin AM. Microvascular proliferation in luminal A and basal-like breast cancer subtypes. J Clin Pathol. 2015;68(11):891–7.

    Article  CAS  PubMed  Google Scholar 

  57. Ribeiro-Silva A, Ribeiro do Vale F, Zucoloto S. Vascular endothelial growth factor expression in the basal subtype of breast carcinoma. Am J Clin Pathol. 2006;125(4):512–8.

    Article  CAS  PubMed  Google Scholar 

  58. Morabito A, Sarmiento R, Bonginelli P, Gasparini G. Antiangiogenic strategies, compounds, and early clinical results in breast cancer. Crit Rev Oncol Hematol. 2004;49(2):91–107.

    Article  PubMed  Google Scholar 

  59. Gravdal K, Halvorsen OJ, Haukaas SA, Akslen LA. Proliferation of immature tumor vessels is a novel marker of clinical progression in prostate cancer. Cancer Res. 2009;69(11):4708–15.

    Article  CAS  PubMed  Google Scholar 

  60. Borretzen A, Gravdal K, Haukaas SA, Mannelqvist M, Beisland C, Akslen LA, et al. The epithelial-mesenchymal transition regulators Twist, Slug, and Snail are associated with aggressive tumour features and poor outcome in prostate cancer patients. J Pathol Clin Res. 2021;7(3):253–70.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kruger K, Stefansson IM, Collett K, Arnes JB, Aas T, Akslen LA. Microvessel proliferation by co-expression of endothelial nestin and Ki-67 is associated with a basal-like phenotype and aggressive features in breast cancer. Breast. 2013;22(3):282–8.

    Article  CAS  PubMed  Google Scholar 

  62. Haldorsen IS, Stefansson I, Gruner R, Husby JA, Magnussen IJ, Werner HM, et al. Increased microvascular proliferation is negatively correlated to tumour blood flow and is associated with unfavourable outcome in endometrial carcinomas. Br J Cancer. 2014;110(1):107–14.

    Article  CAS  PubMed  Google Scholar 

  63. Stefansson IM, Raeder M, Wik E, Mannelqvist M, Kusonmano K, Knutsvik G, et al. Increased angiogenesis is associated with a 32-gene expression signature and 6p21 amplification in aggressive endometrial cancer. Oncotarget. 2015;6(12):10634–45.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Vincenti V, Cassano C, Rocchi M, Persico G. Assignment of the vascular endothelial growth factor gene to human chromosome 6p21.3. Circulation. 1996;93(8):1493–5.

    Article  CAS  PubMed  Google Scholar 

  65. Jain RK. Molecular regulation of vessel maturation. Nat Med. 2003;9(6):685–93.

    Article  CAS  PubMed  Google Scholar 

  66. Lindblom P, Gerhardt H, Liebner S, Abramsson A, Enge M, Hellstrom M, et al. Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev. 2003;17(15):1835–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gerhardt H, Betsholtz C. Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res. 2003;314(1):15–23.

    Article  PubMed  Google Scholar 

  68. Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 1986;315(26):1650–9.

    Article  CAS  PubMed  Google Scholar 

  69. Morikawa S, Baluk P, Kaidoh T, Haskell A, Jain RK, McDonald DM. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol. 2002;160(3):985–1000.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest. 1999;103(2):159–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jain RK. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med. 2001;7(9):987–9.

    Article  CAS  PubMed  Google Scholar 

  72. Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005;307(5706):58–62.

    Article  CAS  PubMed  Google Scholar 

  73. Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT, et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med. 2004;10(2):145–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gee MS, Procopio WN, Makonnen S, Feldman MD, Yeilding NM, Lee WM. Tumor vessel development and maturation impose limits on the effectiveness of anti-vascular therapy. Am J Pathol. 2003;162(1):183–93.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Baluk P, Hashizume H, McDonald DM. Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev. 2005;15(1):102–11.

    Article  CAS  PubMed  Google Scholar 

  76. Winkler F, Kozin SV, Tong RT, Chae SS, Booth MF, Garkavtsev I, et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell. 2004;6(6):553–63.

    CAS  PubMed  Google Scholar 

  77. Kakolyris S, Giatromanolaki A, Koukourakis M, Leigh IM, Georgoulias V, Kanavaros P, et al. Assessment of vascular maturation in non-small cell lung cancer using a novel basement membrane component, LH39: correlation with p53 and angiogenic factor expression. Cancer Res. 1999;59(21):5602–7.

    CAS  PubMed  Google Scholar 

  78. Kakolyris S, Fox SB, Koukourakis M, Giatromanolaki A, Brown N, Leek RD, et al. Relationship of vascular maturation in breast cancer blood vessels to vascular density and metastasis, assessed by expression of a novel basement membrane component, LH39. Br J Cancer. 2000;82(4):844–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wesseling P, Vandersteenhoven JJ, Downey BT, Ruiter DJ, Burger PC. Cellular components of microvascular proliferation in human glial and metastatic brain neoplasms. A light microscopic and immunohistochemical study of formalin-fixed, routinely processed material. Acta Neuropathol. 1993;85(5):508–14.

    Article  CAS  PubMed  Google Scholar 

  80. Rojiani AM, Dorovini-Zis K. Glomeruloid vascular structures in glioblastoma multiforme: an immunohistochemical and ultrastructural study. J Neurosurg. 1996;85(6):1078–84.

    Article  CAS  PubMed  Google Scholar 

  81. Pettersson A, Nagy JA, Brown LF, Sundberg C, Morgan E, Jungles S, et al. Heterogeneity of the angiogenic response induced in different normal adult tissues by vascular permeability factor/vascular endothelial growth factor. Lab Invest. 2000;80(1):99–115.

    Article  CAS  PubMed  Google Scholar 

  82. Sundberg C, Nagy JA, Brown LF, Feng D, Eckelhoefer IA, Manseau EJ, et al. Glomeruloid microvascular proliferation follows adenoviral vascular permeability factor/vascular endothelial growth factor-164 gene delivery. Am J Pathol. 2001;158(3):1145–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Brat DJ, Van Meir EG. Glomeruloid microvascular proliferation orchestrated by VPF/VEGF: a new world of angiogenesis research. Am J Pathol. 2001;158(3):789–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Schiffer D, Bosone I, Dutto A, Di Vito N, Chio A. The prognostic role of vessel productive changes and vessel density in oligodendroglioma. J Neurooncol. 1999;44(2):99–107.

    Article  CAS  PubMed  Google Scholar 

  85. Tsai CY, Lai CH, Chan HL, Kuo T. Glomeruloid hemangioma--a specific cutaneous marker of POEMS syndrome. Int J Dermatol. 2001;40(6):403–6.

    Article  CAS  PubMed  Google Scholar 

  86. Ohtani H. Glomeruloid structures as vascular reaction in human gastrointestinal carcinoma. Jpn J Cancer Res. 1992;83(12):1334–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Blaker H, Dragoje S, Laissue JA, Otto HF. Pericardial involvement by thymomas. Entirely intrapericardial thymoma and a pericardial metastasis of thymoma with glomeruloid vascular proliferations. Pathol Oncol Res. 1999;5(2):160–3.

    Article  CAS  PubMed  Google Scholar 

  88. Dargent JL, Lespagnard L, Verdebout JM, Bourgeois P, Munck D. Glomeruloid microvascular proliferation in angiomyomatous hamartoma of the lymph node. Virchows Arch. 2004;445(3):320–2.

    Article  PubMed  Google Scholar 

  89. Lyons LL, North PE, Mac-Moune Lai F, Stoler MH, Folpe AL, Weiss SW. Kaposiform hemangioendothelioma: a study of 33 cases emphasizing its pathologic, immunophenotypic, and biologic uniqueness from juvenile hemangioma. Am J Surg Pathol. 2004;28(5):559–68.

    Article  PubMed  Google Scholar 

  90. Brat DJ, Castellano-Sanchez A, Kaur B, Van Meir EG. Genetic and biologic progression in astrocytomas and their relation to angiogenic dysregulation. Adv Anat Pathol. 2002;9(1):24–36.

    Article  PubMed  Google Scholar 

  91. Dvorak HF. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol. 2002;20(21):4368–80.

    Article  CAS  PubMed  Google Scholar 

  92. Tanaka F, Oyanagi H, Takenaka K, Ishikawa S, Yanagihara K, Miyahara R, et al. Glomeruloid microvascular proliferation is superior to intratumoral microvessel density as a prognostic marker in non-small cell lung cancer. Cancer Res. 2003;63(20):6791–4.

    CAS  PubMed  Google Scholar 

  93. Hoem D, Straume O, Immervoll H, Akslen LA, Molven A. Vascular proliferation is associated with survival in pancreatic ductal adenocarcinoma. APMIS. 2013;121(11):1037–46.

    Article  CAS  PubMed  Google Scholar 

  94. Straume O, Akslen LA. Increased expression of VEGF-receptors (FLT-1, KDR, NRP-1) and thrombospondin-1 is associated with glomeruloid microvascular proliferation, an aggressive angiogenic phenotype, in malignant melanoma. Angiogenesis. 2003;6(4):295–301.

    Article  CAS  PubMed  Google Scholar 

  95. Foulkes WD, Brunet JS, Stefansson IM, Straume O, Chappuis PO, Begin LR, et al. The prognostic implication of the basal-like (cyclin E high/p27 low/p53+/glomeruloid-microvascular-proliferation+) phenotype of BRCA1-related breast cancer. Cancer Res. 2004;64(3):830–5.

    Article  CAS  PubMed  Google Scholar 

  96. Goffin JR, Straume O, Chappuis PO, Brunet JS, Begin LR, Hamel N, et al. Glomeruloid microvascular proliferation is associated with p53 expression, germline BRCA1 mutations and an adverse outcome following breast cancer. Br J Cancer. 2003;89(6):1031–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415(6871):530–6.

    Article  Google Scholar 

  98. Greenblatt MS, Chappuis PO, Bond JP, Hamel N, Foulkes WD. TP53 mutations in breast cancer associated with BRCA1 or BRCA2 germ-line mutations: distinctive spectrum and structural distribution. Cancer Res. 2001;61(10):4092–7.

    CAS  PubMed  Google Scholar 

  99. Kawai H, Li H, Chun P, Avraham S, Avraham HK. Direct interaction between BRCA1 and the estrogen receptor regulates vascular endothelial growth factor (VEGF) transcription and secretion in breast cancer cells. Oncogene. 2002;21(50):7730–9.

    Article  CAS  PubMed  Google Scholar 

  100. Zhang L, Yu D, Hu M, Xiong S, Lang A, Ellis LM, et al. Wild-type p53 suppresses angiogenesis in human leiomyosarcoma and synovial sarcoma by transcriptional suppression of vascular endothelial growth factor expression. Cancer Res. 2000;60(13):3655–61.

    CAS  PubMed  Google Scholar 

  101. Pore N, Liu S, Shu HK, Li B, Haas-Kogan D, Stokoe D, et al. Sp1 is involved in Akt-mediated induction of VEGF expression through an HIF-1-independent mechanism. Mol Biol Cell. 2004;15(11):4841–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ravi R, Mookerjee B, Bhujwalla ZM, Sutter CH, Artemov D, Zeng Q, et al. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev. 2000;14(1):34–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sherif ZA, Nakai S, Pirollo KF, Rait A, Chang EH. Downmodulation of bFGF-binding protein expression following restoration of p53 function. Cancer Gene Ther. 2001;8(10):771–82.

    Article  CAS  PubMed  Google Scholar 

  104. Dameron KM, Volpert OV, Tainsky MA, Bouck N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science. 1994;265(5178):1582–4.

    Article  CAS  PubMed  Google Scholar 

  105. Schuster C, Akslen LA, Straume O. Expression of Heat Shock Protein 27 in Melanoma Metastases Is Associated with Overall Response to Bevacizumab Monotherapy: Analyses of Predictive Markers in a Clinical Phase II Study. PLoS One. 2016;11(5):e0155242.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Sharma S, Sharma MC, Sarkar C. Morphology of angiogenesis in human cancer: a conceptual overview, histoprognostic perspective and significance of neoangiogenesis. Histopathology. 2005;46(5):481–9.

    Article  CAS  PubMed  Google Scholar 

  107. Giatromanolaki A, Sivridis E, Koukourakis MI. Tumour angiogenesis: vascular growth and survival. APMIS. 2004;112(7-8):431–40.

    Article  PubMed  Google Scholar 

  108. Weyn B, Tjalma WA, Vermeylen P, van Daele A, Van Marck E, Jacob W. Determination of tumour prognosis based on angiogenesis-related vascular patterns measured by fractal and syntactic structure analysis. Clin Oncol (R Coll Radiol). 2004;16(4):307–16.

    Article  CAS  Google Scholar 

  109. Favier J, Plouin PF, Corvol P, Gasc JM. Angiogenesis and vascular architecture in pheochromocytomas: distinctive traits in malignant tumors. Am J Pathol. 2002;161(4):1235–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chi JT, Chang HY, Haraldsen G, Jahnsen FL, Troyanskaya OG, Chang DS, et al. Endothelial cell diversity revealed by global expression profiling. Proc Natl Acad Sci U S A. 2003;100(19):10623–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ruoslahti E. Targeting tumor vasculature with homing peptides from phage display. Semin Cancer Biol. 2000;10(6):435–42.

    Article  CAS  PubMed  Google Scholar 

  112. Ruoslahti E. Vascular zip codes in angiogenesis and metastasis. Biochem Soc Trans. 2004;32(Pt3):397–402.

    Article  CAS  PubMed  Google Scholar 

  113. Laakkonen P, Akerman ME, Biliran H, Yang M, Ferrer F, Karpanen T, et al. Antitumor activity of a homing peptide that targets tumor lymphatics and tumor cells. Proc Natl Acad Sci U S A. 2004;101(25):9381–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, et al. Genes expressed in human tumor endothelium. Science. 2000;289(5482):1197–202.

    Article  CAS  PubMed  Google Scholar 

  115. Fonsatti E, Altomonte M, Nicotra MR, Natali PG, Maio M. Endoglin (CD105): a powerful therapeutic target on tumor-associated angiogenetic blood vessels. Oncogene. 2003;22(42):6557–63.

    Article  CAS  PubMed  Google Scholar 

  116. Kumar S, Ghellal A, Li C, Byrne G, Haboubi N, Wang JM, et al. Breast carcinoma: vascular density determined using CD105 antibody correlates with tumor prognosis. Cancer Res. 1999;59(4):856–61.

    CAS  PubMed  Google Scholar 

  117. Tanaka F, Otake Y, Yanagihara K, Kawano Y, Miyahara R, Li M, et al. Evaluation of angiogenesis in non-small cell lung cancer: comparison between anti-CD34 antibody and anti-CD105 antibody. Clin Cancer Res. 2001;7(11):3410–5.

    CAS  PubMed  Google Scholar 

  118. Wikstrom P, Lissbrant IF, Stattin P, Egevad L, Bergh A. Endoglin (CD105) is expressed on immature blood vessels and is a marker for survival in prostate cancer. Prostate. 2002;51(4):268–75.

    Article  CAS  PubMed  Google Scholar 

  119. Salvesen HB, Gulluoglu MG, Stefansson I, Akslen LA. Significance of CD 105 expression for tumour angiogenesis and prognosis in endometrial carcinomas. APMIS. 2003;111(11):1011–8.

    Article  PubMed  Google Scholar 

  120. Straume O, Akslen LA. Expression of vascular endothelial growth factor, its receptors (FLT-1, KDR) and TSP-1 related to microvessel density and patient outcome in vertical growth phase melanomas. Am J Pathol. 2001;159(1):223–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Brekken RA, Huang X, King SW, Thorpe PE. Vascular endothelial growth factor as a marker of tumor endothelium. Cancer Res. 1998;58(9):1952–9.

    CAS  PubMed  Google Scholar 

  122. Koukourakis MI, Giatromanolaki A, Thorpe PE, Brekken RA, Sivridis E, Kakolyris S, et al. Vascular endothelial growth factor/KDR activated microvessel density versus CD31 standard microvessel density in non-small cell lung cancer. Cancer Res. 2000;60(11):3088–95.

    CAS  PubMed  Google Scholar 

  123. Guddo F, Fontanini G, Reina C, Vignola AM, Angeletti A, Bonsignore G. The expression of basic fibroblast growth factor (bFGF) in tumor-associated stromal cells and vessels is inversely correlated with non-small cell lung cancer progression. Hum Pathol. 1999;30(7):788–94.

    Article  CAS  PubMed  Google Scholar 

  124. Gravdal K, Halvorsen OJ, Haukaas SA, Akslen LA. Expression of bFGF/FGFR-1 and vascular proliferation related to clinicopathologic features and tumor progress in localized prostate cancer. Virchows Arch. 2006;448(1):68–74.

    Article  CAS  PubMed  Google Scholar 

  125. Straume O, Akslen LA. Importance of vascular phenotype by basic fibroblast growth factor, and influence of the angiogenic factors basic fibroblast growth factor/fibroblast growth factor receptor-1 and ephrin-A1/EphA2 on melanoma progression. Am J Pathol. 2002;160(3):1009–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Davies G, Cunnick GH, Mansel RE, Mason MD, Jiang WG. Levels of expression of endothelial markers specific to tumour-associated endothelial cells and their correlation with prognosis in patients with breast cancer. Clin Exp Metastasis. 2004;21(1):31–7.

    Article  CAS  PubMed  Google Scholar 

  127. Rmali KA, Puntis MC, Jiang WG. Prognostic values of tumor endothelial markers in patients with colorectal cancer. World J Gastroenterol. 2005;11(9):1283–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Rmali KA, Watkins G, Harrison G, Parr C, Puntis MC, Jiang WG. Tumour endothelial marker 8 (TEM-8) in human colon cancer and its association with tumour progression. Eur J Surg Oncol. 2004;30(9):948–53.

    Article  CAS  PubMed  Google Scholar 

  129. Neri D, Bicknell R. Tumour vascular targeting. Nat Rev Cancer. 2005;5(6):436–46.

    Article  CAS  PubMed  Google Scholar 

  130. Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarski MD, Li KC. Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nat Med. 1998;4(5):623–6.

    Article  CAS  PubMed  Google Scholar 

  131. Hood JD, Cheresh DA. Targeted delivery of mutant Raf kinase to neovessels causes tumor regression. Cold Spring Harb Symp Quant Biol. 2002;67:285–91.

    Article  CAS  PubMed  Google Scholar 

  132. van Zijl F, Krupitza G, Mikulits W. Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat Res. 2011;728(1-2):23–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Rakha EA, Martin S, Lee AH, Morgan D, Pharoah PD, Hodi Z, et al. The prognostic significance of lymphovascular invasion in invasive breast carcinoma. Cancer. 2012;118(15):3670–80.

    Article  PubMed  Google Scholar 

  134. Arnaout-Alkarain A, Kahn HJ, Narod SA, Sun PA, Marks AN. Significance of lymph vessel invasion identified by the endothelial lymphatic marker D2-40 in node negative breast cancer. Mod Pathol. 2007;20(2):183–91.

    Article  CAS  PubMed  Google Scholar 

  135. Roses DF, Bell DA, Flotte TJ, Taylor R, Ratech H, Dubin N. Pathologic predictors of recurrence in stage 1 (TINOMO) breast cancer. Am J Clin Pathol. 1982;78(6):817–20.

    Article  CAS  PubMed  Google Scholar 

  136. Gujam FJ, Going JJ, Mohammed ZM, Orange C, Edwards J, McMillan DC. Immunohistochemical detection improves the prognostic value of lymphatic and blood vessel invasion in primary ductal breast cancer. BMC Cancer. 2014;14:676.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Chen Y, Klingen TA, Aas H, Wik E, Akslen LA. Tumor-associated lymphocytes and macrophages are related to stromal elastosis and vascular invasion in breast cancer. J Pathol Clin Res. 2021;7(5):517–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Klingen TA, Chen Y, Aas H, Wik E, Akslen LA. Tumor-associated macrophages are strongly related to vascular invasion, non-luminal subtypes, and interval breast cancer. Hum Pathol. 2017;69:72–80.

    Article  CAS  PubMed  Google Scholar 

  139. Pantel K, Brakenhoff RH, Brandt B. Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat Rev Cancer. 2008;8(5):329–40.

    Article  CAS  PubMed  Google Scholar 

  140. Woelfle U, Cloos J, Sauter G, Riethdorf L, Janicke F, van Diest P, et al. Molecular signature associated with bone marrow micrometastasis in human breast cancer. Cancer Res. 2003;63(18):5679–84.

    CAS  PubMed  Google Scholar 

  141. Foulkes WD, Grainge MJ, Rakha EA, Green AR, Ellis IO. Tumor size is an unreliable predictor of prognosis in basal-like breast cancers and does not correlate closely with lymph node status. Breast Cancer Res Treat. 2009;117(1):199–204.

    Article  PubMed  Google Scholar 

  142. Holm-Rasmussen EV, Jensen MB, Balslev E, Kroman N, Tvedskov TF. Reduced risk of axillary lymphatic spread in triple-negative breast cancer. Breast Cancer Res Treat. 2015;149(1):229–36.

    Article  PubMed  Google Scholar 

  143. Braun S, Pantel K, Muller P, Janni W, Hepp F, Kentenich CR, et al. Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. N Engl J Med. 2000;342(8):525–33.

    Article  CAS  PubMed  Google Scholar 

  144. Mannelqvist M, Stefansson IM, Bredholt G, Hellem Bo T, Oyan AM, Jonassen I, et al. Gene expression patterns related to vascular invasion and aggressive features in endometrial cancer. Am J Pathol. 2011;178(2):861–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Mannelqvist M, Wik E, Stefansson IM, Akslen LA. An 18-gene signature for vascular invasion is associated with aggressive features and reduced survival in breast cancer. PLoS One. 2014;9(6):e98787.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars A. Akslen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akslen, L.A. (2022). Tissue-Based Biomarkers of Tumor-Vascular Interactions. In: Akslen, L.A., Watnick, R.S. (eds) Biomarkers of the Tumor Microenvironment. Springer, Cham. https://doi.org/10.1007/978-3-030-98950-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98950-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98949-1

  • Online ISBN: 978-3-030-98950-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics