Skip to main content

Implementation of Precision Genetic Approaches for Type 1 and 2 Diabetes

  • Chapter
  • First Online:
Precision Medicine in Diabetes

Abstract

Recent advances in our understanding of the genetic basis of type 1 diabetes, type 2 diabetes and its associated complications have greatly facilitated the potential implementation of precision medicine in diabetes. Potential areas of incorporating genomic or other information to deliver precision medicine include personalized approaches to diagnosis and sub-classification, prevention, treatment and the prediction of diabetes complications. Implementation requires multi-pronged approach in biomarker discovery, validation, clinician education and patient empowerment, as well as regulatory support and reimbursement. Despite some challenges in implementation, the development of precision medicine in diabetes represents an important opportunity to “modernize” diabetes management, improve outcome and herald the dawn of a new era in diabetes management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Robertson CC, Inshaw JRJ, Onengut-Gumuscu S, Chen WM, Santa Cruz DF, Yang H, et al. Fine-mapping, trans-ancestral and genomic analyses identify causal variants, cells, genes and drug targets for type 1 diabetes. Nat Genet. 2021;53(7):962–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mahajan A, Taliun D, Thurner M, Robertson NR, Torres JM, Rayner NW, et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet. 2018;50(11):1505–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Spracklen CN, Horikoshi M, Kim YJ, Lin K, Bragg F, Moon S, et al. Identification of type 2 diabetes loci in 433,540 east Asian individuals. Nature. 2020;582(7811):240–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chung WK, Erion K, Florez JC, Hattersley AT, Hivert MF, Lee CG, et al. Precision medicine in diabetes: a consensus report from the American Diabetes Association (ADA) and the European Association for the Study of diabetes (EASD). Diabetes Care. 2020;43(7):1617–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ewald N, Hardt PD. Diagnosis and treatment of diabetes mellitus in chronic pancreatitis. World J Gastroenterol. 2013;19(42):7276–81.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lao TT, Chan BC, Leung WC, Ho LF, Tse KY. Maternal hepatitis B infection and gestational diabetes mellitus. J Hepatol. 2007;47(1):46–50.

    Article  CAS  PubMed  Google Scholar 

  7. Ma RC, Kong AP, Chan N, Tong PC, Chan JC. Drug-induced endocrine and metabolic disorders. Drug Saf. 2007;30(3):215–45.

    Article  CAS  PubMed  Google Scholar 

  8. Fisher EB, Chan JC, Nan H, Sartorius N, Oldenburg B. Co-occurrence of diabetes and depression: conceptual considerations for an emerging global health challenge. J Affect Disord. 2012;142(Suppl):S56–66.

    Article  PubMed  Google Scholar 

  9. Jones AG, McDonald TJ, Shields BM, Hagopian W, Hattersley AT. Latent autoimmune diabetes of adults (LADA) is likely to represent a mixed population of autoimmune (type 1) and nonautoimmune (type 2) diabetes. Diabetes Care. 2021.

    Google Scholar 

  10. Oram RA, Patel K, Hill A, Shields B, McDonald TJ, Jones A, et al. A type 1 diabetes genetic risk score can aid discrimination between type 1 and type 2 diabetes in young adults. Diabetes Care. 2016;39(3):337–44.

    Article  CAS  PubMed  Google Scholar 

  11. Bingley PJ, Wherrett DK, Shultz A, Rafkin LE, Atkinson MA, Greenbaum CJ. Type 1 diabetes TrialNet: a multifaceted approach to bringing disease-modifying therapy to clinical use in type 1 diabetes. Diabetes Care. 2018;41(4):653–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Herold KC, Bundy BN, Long SA, Bluestone JA, DiMeglio LA, Dufort MJ, et al. An anti-CD3 antibody, Teplizumab, in relatives at risk for type 1 diabetes. N Engl J Med. 2019;381(7):603–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ferrat LA, Vehik K, Sharp SA, Lernmark A, Rewers MJ, She JX, et al. A combined risk score enhances prediction of type 1 diabetes among susceptible children. Nat Med. 2020;26(8):1247–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McAuley SA, Lee MH, Paldus B, Vogrin S, de Bock MI, Abraham MB, et al. Six months of hybrid closed-loop versus manual insulin delivery with Fingerprick blood glucose monitoring in adults with type 1 diabetes: a randomized controlled trial. Diabetes Care. 2020;43(12):3024–33.

    Google Scholar 

  15. Tyler NS, Mosquera-Lopez CM, Wilson LM, Dodier RH, Branigan DL, Gabo VB, et al. An artificial intelligence decision support system for the management of type 1 diabetes. Nat Metab. 2020;2(7):612–9.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chaimowitz NS, Ebenezer SJ, Hanson IC, Anderson M, Forbes LR. STAT1 gain of function, type 1 diabetes, and reversal with JAK inhibition. N Engl J Med. 2020;383(15):1494–6.

    Article  PubMed  Google Scholar 

  17. Akil AA, Yassin E, Al-Maraghi A, Aliyev E, Al-Malki K, Fakhro KA. Diagnosis and treatment of type 1 diabetes at the dawn of the personalized medicine era. J Transl Med. 2021;19(1):137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen S, Du K, Zou C. Current progress in stem cell therapy for type 1 diabetes mellitus. Stem Cell Res Ther. 2020;11(1):275.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ma RC. Genetics of cardiovascular and renal complications in diabetes. J Diabetes Investig. 2016;7(2):139–54.

    Article  CAS  PubMed  Google Scholar 

  20. Ma RC, Cooper ME. Genetics of diabetic kidney disease-from the worst of nightmares to the light of Dawn? J Am Soc Nephrol. 2017;28(2):389–93.

    Article  CAS  PubMed  Google Scholar 

  21. Sandholm N, Groop PH. Genetic basis of diabetic kidney disease and other diabetic complications. Curr Opin Genet Dev. 2018;50:17–24.

    Article  CAS  PubMed  Google Scholar 

  22. Salem RM, Todd JN, Sandholm N, Cole JB, Chen WM, Andrews D, et al. Genome-wide association study of diabetic kidney disease highlights biology involved in glomerular basement membrane collagen. J Am Soc Nephrol. 2019;30(10):2000–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Costacou T, Ferrell RE, Orchard TJ. Haptoglobin genotype: a determinant of cardiovascular complication risk in type 1 diabetes. Diabetes. 2008;57(6):1702–6.

    Article  CAS  PubMed  Google Scholar 

  24. Redondo MJ, Hagopian WA, Oram R, Steck AK, Vehik K, Weedon M, et al. The clinical consequences of heterogeneity within and between different diabetes types. Diabetologia. 2020;63(10):2040–8.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ahlqvist E, Tuomi T, Groop L. Clusters provide a better holistic view of type 2 diabetes than simple clinical features. Lancet Diabetes Endocrinol. 2019;7(9):668–9.

    Article  PubMed  Google Scholar 

  26. Udler MS, Kim J, von Grotthuss M, Bonas-Guarch S, Cole JB, Chiou J, et al. Type 2 diabetes genetic loci informed by multi-trait associations point to disease mechanisms and subtypes: a soft clustering analysis. PLoS Med. 2018;15(9):e1002654.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Shields BM, McDonald TJ, Ellard S, Campbell MJ, Hyde C, Hattersley AT. The development and validation of a clinical prediction model to determine the probability of MODY in patients with young-onset diabetes. Diabetologia. 2012;55(5):1265–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhu D, Gan S, Liu Y, Ma J, Dong X, Song W, et al. Dorzagliatin monotherapy in Chinese patients with type 2 diabetes: a dose-ranging, randomised, double-blind, placebo-controlled, phase 2 study. The lancet Diabetes & endocrinology. 2018;6:627–36.

    Google Scholar 

  29. Xie F, Chan JC, Ma RC. Precision medicine in diabetes prevention, classification and management. J Diabetes Investig. 2018.

    Google Scholar 

  30. Langenberg C, Sharp SJ, Franks PW, Scott RA, Deloukas P, Forouhi NG, et al. Gene-lifestyle interaction and type 2 diabetes: the EPIC InterAct Case-cohort study. PLoS Med. 2014;11(5):e1001647.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Chan JCN, Lim LL, Wareham NJ, Shaw JE, Orchard TJ, Zhang P, et al. The lancet commission on diabetes: using data to transform diabetes care and patient lives. Lancet. 2021;396(10267):2019–82.

    Article  PubMed  Google Scholar 

  32. Raghavan S, Jablonski K, Delahanty LM, Maruthur NM, Leong A, Franks PW, et al. Interaction of diabetes genetic risk and successful lifestyle modification in the diabetes prevention Programme. Diabetes Obes Metab. 2021;23(4):1030–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wheeler E, Leong A, Liu CT, Hivert MF, Strawbridge RJ, Podmore C, et al. Impact of common genetic determinants of hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: a transethnic genome-wide meta-analysis. PLoS Med. 2017;14(9):e1002383.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lean ME, Leslie WS, Barnes AC, Brosnahan N, Thom G, McCombie L, et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. Lancet. 2018;391(10120):541–51.

    Article  PubMed  Google Scholar 

  35. Ko GT, So WY, Tong PC, Chan WB, Yang X, Ma RC, et al. Effect of interactions between C peptide levels and insulin treatment on clinical outcomes among patients with type 2 diabetes mellitus. CMAJ. 2009;180(9):919–26.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Luk AOY, Lau ESH, Lim C, Kong APS, Chow E, Ma RCW, et al. Diabetes-related complications and mortality in patients with young-onset latent autoimmune diabetes: a 14-year analysis of the prospective Hong Kong diabetes register. Diabetes Care. 2019;42(6):1042–50.

    Article  CAS  PubMed  Google Scholar 

  37. Fan B, Wu H, Shi M, Yang A, Lau ESH, Tam CHT, et al. associations of the homa2-%b and homa2-ir with progression to diabetes and glycaemic deterioration in young and middle-aged chinese. Diabetes/metabolism research and reviews. 2022:e3525.

    Google Scholar 

  38. Gerstein HC, Miller ME, Byington RP, Goff DC, Jr., Bigger JT, Action to Control Cardiovascular Risk in Diabetes Study G, et al. Effects of intensive glucose lowering in type 2 diabetes. New England J Med. 2008;358(24):2545–59.

    Google Scholar 

  39. Kong AP, Yang X, Luk A, Ma RC, So WY, Ozaki R, et al. Severe hypoglycemia identifies vulnerable patients with type 2 diabetes at risk for premature death and all-site cancer: the Hong Kong diabetes registry. Diabetes Care. 2014;37(4):1024–31.

    Article  CAS  PubMed  Google Scholar 

  40. Kong AP, Yang X, Luk A, Cheung KK, Ma RC, So WY, et al. Hypoglycaemia, chronic kidney disease and death in type 2 diabetes: the Hong Kong diabetes registry. BMC Endocr Disord. 2014;14:48.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Pozzilli P, Leslie RD, Chan J, De Fronzo R, Monnier L, Raz I, et al. The A1C and ABCD of glycaemia management in type 2 diabetes: a physician's personalized approach. Diabetes Metab Res Rev. 2010;26(4):239–44.

    Article  CAS  PubMed  Google Scholar 

  42. Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, et al. Management of hyperglycaemia in type 2 diabetes: a patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of diabetes (EASD). Diabetologia. 2012;55(6):1577–96.

    Article  CAS  PubMed  Google Scholar 

  43. Shah HS, Gao H, Morieri ML, Skupien J, Marvel S, Pare G, et al. Genetic predictors of cardiovascular mortality during intensive glycemic control in type 2 diabetes: findings from the ACCORD clinical trial. Diabetes Care. 2016;39(11):1915–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhou K, Donnelly LA, Morris AD, Franks PW, Jennison C, Palmer CN, et al. Clinical and genetic determinants of progression of type 2 diabetes: a DIRECT study. Diabetes Care. 2014;37(3):718–24.

    Article  CAS  PubMed  Google Scholar 

  45. Jiang G, Luk AO, Tam CHT, Lau ES, Ozaki R, Chow EYK, et al. Obesity, clinical, and genetic predictors for glycemic progression in Chinese patients with type 2 diabetes: a cohort study using the Hong Kong diabetes register and Hong Kong diabetes biobank. PLoS Med. 2020;17(7):e1003209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhou K, Donnelly L, Burch L, Tavendale R, Doney AS, Leese G, et al. Loss-of-function CYP2C9 variants improve therapeutic response to sulfonylureas in type 2 diabetes: a go-DARTS study. Clin Pharmacol Ther. 2010;87(1):52–6.

    Article  CAS  PubMed  Google Scholar 

  47. Zhou K, Bellenguez C, Spencer CC, GoDarts, Group UDPS, Wellcome Trust Case Control C, et al. Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes. Nat Genet. 2011;43(2):117–20.

    Google Scholar 

  48. Zhou K, Yee SW, Seiser EL, van Leeuwen N, Tavendale R, Bennett AJ, et al. Variation in the glucose transporter gene SLC2A2 is associated with glycemic response to metformin. Nat Genet. 2016;48(9):1055–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang K, Yang A, Shi M, Tam CCH, Lau ESH, Fan B, et al. CYP2C19 Loss-of-function polymorphisms are associated with reduced risk of sulfonylurea treatment failure in chinese patients with type 2 diabetes. Clinical pharmacology and therapeutics. 2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stevens RJ, Coleman RL, Adler AI, Stratton IM, Matthews DR, Holman RR. Risk factors for myocardial infarction case fatality and stroke case fatality in type 2 diabetes: UKPDS 66. Diabetes Care. 2004;27(1):201–7.

    Article  PubMed  Google Scholar 

  51. Basu S, Sussman JB, Berkowitz SA, Hayward RA, Yudkin JS. Development and validation of risk equations for complications of type 2 diabetes (RECODe) using individual participant data from randomised trials. Lancet Diabetes Endocrinol. 2017;5(10):788–98.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bannister CA, Poole CD, Jenkins-Jones S, Morgan CL, Elwyn G, Spasic I, et al. External validation of the UKPDS risk engine in incident type 2 diabetes: a need for new type 2 diabetes-specific risk equations. Diabetes Care. 2014;37(2):537–45.

    Article  CAS  PubMed  Google Scholar 

  53. Yang X, So WY, Kong AP, Ma RC, Ko GT, Ho CS, et al. Development and validation of a total coronary heart disease risk score in type 2 diabetes mellitus. Am J Cardiol. 2008;101(5):596–601.

    Article  PubMed  Google Scholar 

  54. Basu S, Sussman JB, Berkowitz SA, Hayward RA, Bertoni AG, Correa A, et al. Validation of risk equations for complications of type 2 diabetes (RECODe) using individual participant data from diverse longitudinal cohorts in the U.S. Diabetes Care. 2018;41(3):586–95.

    Article  PubMed  Google Scholar 

  55. Chan JCN, Lim LL, Luk AOY, Ozaki R, Kong APS, Ma RCW, et al. From Hong Kong diabetes register to JADE program to RAMP-DM for data-driven actions. Diabetes Care. 2019;42(11):2022–31.

    Article  PubMed  Google Scholar 

  56. Chan JC, So W, Ma RC, Tong PC, Wong R, Yang X. The complexity of vascular and non-vascular complications of diabetes: the Hong Kong diabetes registry. Curr Cardiovasc Risk Rep. 2011;5(3):230–9.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lim LL, Lau ESH, Ozaki R, Chung H, Fu AWC, Chan W, et al. Association of technologically assisted integrated care with clinical outcomes in type 2 diabetes in Hong Kong using the prospective JADE program: a retrospective cohort analysis. PLoS Med. 2020;17(10):e1003367.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tutino GE, Yang WY, Li X, Li WH, Zhang YY, Guo XH, et al. A multicentre demonstration project to evaluate the effectiveness and acceptability of the web-based joint Asia diabetes evaluation (JADE) programme with or without nurse support in Chinese patients with type 2 diabetes. Diabet Med. 2017;34(3):440–50.

    Article  CAS  PubMed  Google Scholar 

  59. Lim LL, Lau ESH, Fu AWC, Ray S, Hung YJ, Tan ATB, et al. Effects of a technology-assisted integrated diabetes care program on Cardiometabolic risk factors among patients with type 2 diabetes in the Asia-Pacific region: the JADE program randomized clinical trial. JAMA Netw Open. 2021;4(4):e217557.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Khera AV, Chaffin M, Aragam KG, Haas ME, Roselli C, Choi SH, et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet. 2018;50(9):1219–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Morieri ML, Gao H, Pigeyre M, Shah HS, Sjaarda J, Mendonca C, et al. Genetic tools for coronary risk assessment in type 2 diabetes: a cohort study from the ACCORD clinical trial. Diabetes Care. 2018;41(11):2404–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tam CHT, Lim CKP, Luk AOY, Ng ACW, Lee HM, Jiang G, et al. Development of genome-wide polygenic risk scores for lipid traits and clinical applications for dyslipidemia, subclinical atherosclerosis, and diabetes cardiovascular complications among east Asians. Genome Med. 2021;13(1):29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wuttke M, Li Y, Li M, Sieber KB, Feitosa MF, Gorski M, et al. A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nat Genet. 2019;51(6):957–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Stanzick KJ, Li Y, Schlosser P, Gorski M, Wuttke M, Thomas LF, et al. Discovery and prioritization of variants and genes for kidney function in >1.2 million individuals. Nat Commun. 2021;12(1):4350.

    Google Scholar 

  65. Qiu C, Hanson RL, Fufaa G, Kobes S, Gluck C, Huang J, et al. Cytosine methylation predicts renal function decline in American Indians. Kidney Int. 2018;93(6):1417–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gluck C, Qiu C, Han SY, Palmer M, Park J, Ko YA, et al. Kidney cytosine methylation changes improve renal function decline estimation in patients with diabetic kidney disease. Nat Commun. 2019;10(1):2461.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Fan B, Luk AOY, Chan JCN, Ma RCW. MicroRNA and diabetic complications: a clinical perspective. Antioxid Redox Signal. 2018;29(11):1041–63.

    Article  CAS  PubMed  Google Scholar 

  68. Lindhardt M, Persson F, Zurbig P, Stalmach A, Mischak H, de Zeeuw D, et al. Urinary proteomics predict onset of microalbuminuria in normoalbuminuric type 2 diabetic patients, a sub-study of the DIRECT-protect 2 study. Nephrol Dial Transplant. 2017;32(11):1866–73.

    CAS  PubMed  Google Scholar 

  69. Tofte N, Lindhardt M, Adamova K, Bakker SJL, Beige J, Beulens JWJ, et al. Early detection of diabetic kidney disease by urinary proteomics and subsequent intervention with spironolactone to delay progression (PRIORITY): a prospective observational study and embedded randomised placebo-controlled trial. Lancet Diabetes Endocrinol. 2020;8(4):301–12.

    Article  CAS  PubMed  Google Scholar 

  70. Fitipaldi H, McCarthy MI, Florez JC, Franks PW. A global overview of precision medicine in type 2 diabetes. Diabetes. 2018;67(10):1911–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Grant RW, O'Brien KE, Waxler JL, Vassy JL, Delahanty LM, Bissett LG, et al. Personalized genetic risk counseling to motivate diabetes prevention: a randomized trial. Diabetes Care. 2013;36(1):13–9.

    Article  PubMed  Google Scholar 

  72. Godino JG, van Sluijs EM, Marteau TM, Sutton S, Sharp SJ, Griffin SJ. Lifestyle advice combined with personalized estimates of genetic or phenotypic risk of type 2 diabetes, and objectively measured physical activity: a randomized controlled trial. PLoS Med. 2016;13(11):e1002185.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Hollands GJ, French DP, Griffin SJ, Prevost AT, Sutton S, King S, et al. The impact of communicating genetic risks of disease on risk-reducing health behaviour: systematic review with meta-analysis. BMJ (Clinical Res Ed). 2016;352:i1102.

    Google Scholar 

  74. Ma RC, Xie F, Lim CJ, Lau SH, Luk AO, Ozaki R, et al. Genetic testing and counseling to reduce diabetic complications (NCT02364323). Available from: https://clinicaltrials.gov/ct2/show/NCT02364323?term=ma%2C+ronald&draw=2&rank=1. Last accessed 14 Aug, 2021.

  75. Chan JC. Precision medicine in chinese patients with young onset diabetes (NCT04049149). Available from: https://clinicaltrials.gov/ct2/show/NCT04049149?term=chan%2C+juliana&cond=diabetes+AND+prism&draw=2&rank=1. Last accessed 14 Aug, 2021.

  76. Lim LL, Lau ESH, Kong APS, Davies MJ, Levitt NS, Eliasson B, et al. Aspects of multicomponent integrated care promote sustained improvement in surrogate clinical outcomes: a systematic review and meta-analysis. Diabetes Care. 2018;41(6):1312–20.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

RCWM acknowledges support from the Research Grants Council Research Impact Fund (CU R4012-18) and a Croucher Senior Medical Research Fellowship. JCNC acknowledges the support of the Hong Kong Government Health and Medical Research Fund for an implementation study of Precision Medicine to Redefine Insulin Secretion and Monogenic Diabetes in Chinese Patients with Young-onset Diabetes (PRISM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald C. W. Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ma, R.C.W., Chan, J.C.N. (2022). Implementation of Precision Genetic Approaches for Type 1 and 2 Diabetes. In: Basu, R. (eds) Precision Medicine in Diabetes. Springer, Cham. https://doi.org/10.1007/978-3-030-98927-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98927-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98926-2

  • Online ISBN: 978-3-030-98927-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics