Skip to main content

General Theory of Light Propagation and Imaging Through the Atmosphere

  • Book
  • © 2022
  • Latest edition

Overview

  • Features many updates and a new chapter providing a comprehensive mathematical tool set
  • Enhances understanding through tables with mathematical notations at the end of each chapter
  • Offers methods for rapid identification of ‘sweet spot’ wavelength regions

Part of the book series: Progress in Optical Science and Photonics (POSP, volume 20)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (18 chapters)

Keywords

About this book

This 2nd edition lays out an updated version of the general theory of light propagation and imaging through Earth’s turbulent atmosphere initially developed in the late ‘70s and ‘80s, with additional applications in the areas of laser communications and high-energy laser beam propagation. New material includes a chapter providing a comprehensive mathematical tool set for precisely characterizing image formation with the anticipated Extremely Large Telescopes (ELTS), enabling a staggering range of star image shapes and sizes; existing chapters rewritten or modified so as to supplement the mathematics with clearer physical insight through written and graphical means; a history of the development of present-day understanding of light propagation and imaging through the atmosphere as represented by the general theory described. Beginning with the rudimentary, geometrical-optics based understanding of a century ago, it describes advances made in the 1960s, including the developmentof the ‘Kolmogorov theory,’ the deficiencies  of which undermined its credibility, but not before it had done enormous damage, such as construction of a generation of underperforming ‘light bucket’ telescopes. The general theory requires no a priori turbulence assumptions. Instead, it provides means for calculating the turbulence properties directly from readily-measurable properties of star images.

Authors and Affiliations

  • St. Andrews, UK

    T. Stewart McKechnie

About the author

T. Stewart McKechnie, BS (Hons), MS, PhD, studied at Edinburgh University and Imperial College London, where he subsequently undertook postdoctoral research and lectured in Optics. After working at Loughborough University (UK), Dr. McKechnie went on to become a Consultant in Optics and program leader for optical system development of light valve and CRT-based projection TV systems at North American Philips Laboratories. In 1988 he joined Martin Marietta Corporation, Albuquerque, and in 1989 transferred to Lentec Corporation, where he was responsible for optics support at the Developmental Optics Facility relating to development of optical components for HEL systems. From 1992 to 2003 Dr. McKechnie was an Independent Optics Consultant at McKechnie Optics Research, his clients/projects including ITT Corp, NASA, the ATP Testbed program (formerly HABE), S Systems Corp, Aerotherm Corporation, Imaging Systems Laboratory (Florida Atlantic University) and Sandia National Laboratories. Between2003 and 2009 he worked at ITT Corporation, Advanced Engineering & Sciences, Albuquerque, New Mexico, as Chief Scientist with responsibility for optical design, modeling, and construction of Light Detection and Ranging (LIDAR) and Laser Detection and Ranging (LADAR) remote sensing systems.

Bibliographic Information

Publish with us